Unveiling the Mechanism of Alleviating Ischemia Reperfusion Injury via a Layered Double Hydroxide-Based Nanozyme

神经保护 氧化应激 活性氧 超氧化物歧化酶 缺血 再灌注损伤 药理学 过氧化氢酶 材料科学 自由基清除剂 体内 生物物理学 生物相容性 生物化学 化学 医学 生物 内科学 生物技术 冶金
作者
Xiaotong Ma,Baorui Zhang,Na Ma,Chuxuan Liu,Yan Miao,Xin Liang,Shanyue Guan,Da‐Wei Li,Aihua Liu,Shuyun Zhou
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
被引量:7
标识
DOI:10.1021/acsami.2c19570
摘要

Oxidative stress after ischemia reperfusion can cause irreversible brain damage. Thus, it is vital to timely consume excessive reactive oxygen species (ROS) and conduct molecular imaging monitoring on the brain injury site. However, previous studies have focused on how to scavenge ROS while ignoring the mechanism of relieving the reperfusion injury. Herein, we reported a layered double hydroxide (LDH)-based nanozyme (denoted as ALDzyme), which was fabricated by the confinement of astaxanthin (AST) with LDH. This ALDzyme can mimic natural enzymes, which include superoxide dismutase (SOD) and catalase (CAT). Furthermore, the SOD-like activity of ALDzyme is 16.3 times higher than that of CeO2 (a typical ROS scavenger). Based on these enzyme-mimicking properties, this one-of-a-kind ALDzyme offers strong anti-oxidative properties as well as high biocompatibility. Importantly, this unique ALDzyme can establish an efficient magnetic resonance imaging platform, thus guiding the in vivo details. As a result, the infarct area can be reduced by 77% after reperfusion therapy, and the neurological impairment score can be lowered from 3-4 to 0-1. Density functional theory computations can reveal more about the mechanism of this ALDzyme's significant ROS consumption. These findings provide a method for unraveling the neuroprotection application process in ischemia reperfusion injury using an LDH-based nanozyme as a remedial nanoplatform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
情怀应助蔡蔡不菜菜采纳,获得10
刚刚
shouyu29应助MADKAI采纳,获得10
1秒前
CipherSage应助MADKAI采纳,获得10
1秒前
乐乐应助MADKAI采纳,获得10
1秒前
ChangSZ应助MADKAI采纳,获得10
1秒前
乐乐应助MADKAI采纳,获得10
1秒前
小飞七应助MADKAI采纳,获得10
1秒前
Akim应助MADKAI采纳,获得20
1秒前
科研通AI5应助MADKAI采纳,获得10
1秒前
充电宝应助MADKAI采纳,获得10
1秒前
buno应助MADKAI采纳,获得10
1秒前
1秒前
小唐完成签到 ,获得积分0
3秒前
思源应助年轻的咖啡豆采纳,获得10
3秒前
5秒前
科研通AI5应助junc采纳,获得20
5秒前
绿洲完成签到,获得积分10
6秒前
6秒前
yf_zhu发布了新的文献求助10
6秒前
正直亦旋发布了新的文献求助10
6秒前
7秒前
华仔应助招财不肥采纳,获得10
7秒前
健康的梦曼完成签到 ,获得积分10
7秒前
最最最发布了新的文献求助10
7秒前
科研是什么鬼完成签到,获得积分10
9秒前
9秒前
10秒前
欢喜素阴完成签到 ,获得积分10
11秒前
yirenli完成签到,获得积分10
11秒前
希望天下0贩的0应助DAYTOY采纳,获得10
11秒前
狮子座完成签到,获得积分10
11秒前
爆米花应助润润轩轩采纳,获得10
11秒前
13秒前
熊boy完成签到,获得积分10
13秒前
1233完成签到,获得积分10
13秒前
Chang发布了新的文献求助10
13秒前
111222发布了新的文献求助50
13秒前
wxd发布了新的文献求助10
14秒前
上官若男应助浅笑采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762