Computerized Diagnosis of Liver Tumors From CT Scans Using a Deep Neural Network Approach

肝内胆管癌 医学 放射科 肝细胞癌 计算机断层摄影术 转移 肝肿瘤 癌症 病理 内科学
作者
Abhishek Midya,Jayasree Chakraborty,Rami Srouji,Raja R. Narayan,Thomas Boerner,Jian Zheng,Linda M. Pak,John M. Creasy,Luz Adriana Escobar,Kate A. Harrington,Mithat Gönen,Michael I. D’Angelica,T. Peter Kingham,Richard Kinh Gian,William R. Jarnagin,Amber L. Simpson
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (5): 2456-2464 被引量:19
标识
DOI:10.1109/jbhi.2023.3248489
摘要

The liver is a frequent site of benign and malignant, primary and metastatic tumors. Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the most common primary liver cancers, and colorectal liver metastasis (CRLM) is the most common secondary liver cancer. Although the imaging characteristic of these tumors is central to optimal clinical management, it relies on imaging features that are often non-specific, overlap, and are subject to inter-observer variability. Thus, in this study, we aimed to categorize liver tumors automatically from CT scans using a deep learning approach that objectively extracts discriminating features not visible to the naked eye. Specifically, we used a modified Inception v3 network-based classification model to classify HCC, ICC, CRLM, and benign tumors from pretreatment portal venous phase computed tomography (CT) scans. Using a multi-institutional dataset of 814 patients, this method achieved an overall accuracy rate of 96%, with sensitivity rates of 96%, 94%, 99%, and 86% for HCC, ICC, CRLM, and benign tumors, respectively, using an independent dataset. These results demonstrate the feasibility of the proposed computer-assisted system as a novel non-invasive diagnostic tool to classify the most common liver tumors objectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nimonimo完成签到,获得积分10
2秒前
笑笑完成签到,获得积分10
2秒前
zjm完成签到,获得积分10
3秒前
tshrdhyukfesfd完成签到 ,获得积分10
3秒前
胖肉肉完成签到,获得积分20
3秒前
思源应助hongjie_w采纳,获得10
3秒前
情怀应助pups采纳,获得30
3秒前
JamesPei应助爱撞墙的猫采纳,获得10
4秒前
平淡航空完成签到,获得积分10
4秒前
正直凌文发布了新的文献求助20
4秒前
4秒前
文耳东发布了新的文献求助10
5秒前
jj关闭了jj文献求助
5秒前
MY发布了新的文献求助30
8秒前
彭于晏应助彩色垣采纳,获得10
9秒前
龙仔发布了新的文献求助10
10秒前
SYLH应助yangg采纳,获得10
10秒前
避尘完成签到 ,获得积分10
10秒前
六六完成签到,获得积分10
11秒前
科研小菜完成签到,获得积分10
11秒前
温冰雪应助lwww423采纳,获得10
11秒前
12秒前
12秒前
NexusExplorer应助racill采纳,获得10
12秒前
在水一方应助龙仔采纳,获得10
13秒前
13秒前
14秒前
14秒前
wangwangwang发布了新的文献求助10
15秒前
HOLLYWOO完成签到,获得积分10
15秒前
misalia完成签到,获得积分10
16秒前
蛋宝完成签到,获得积分10
16秒前
科研小南完成签到 ,获得积分10
16秒前
SYLH应助开放磬采纳,获得10
18秒前
田様应助ee采纳,获得10
18秒前
研友_VZG64n发布了新的文献求助10
18秒前
19秒前
MY完成签到,获得积分20
20秒前
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089