薄脆饼
制作
与非门
材料科学
堆栈(抽象数据类型)
各向同性
缩放比例
图层(电子)
有限元法
可扩展性
晶圆规模集成
电子工程
光电子学
计算机科学
工程类
结构工程
复合材料
逻辑门
物理
光学
几何学
数学
医学
替代医学
病理
数据库
程序设计语言
作者
Oguzhan Orkut Okudur,Mario González,G. Van den bosch,M. Rosmeulen
标识
DOI:10.1016/j.microrel.2023.114996
摘要
High levels of wafer warpage encountered during 3-D NAND fabrication constitute a major limitation for the advancement of the technology that relies firmly on increasing the number of layers in the vertical stack. In this study, a multi-scale finite-element modeling framework, based on local to global simulations, is utilized to identify the source and monitor the evolution of mechanical stress along with associated wafer deformations. It is shown that scaling-friendly approaches such as increasing the slit pitch and decreasing the metal layer thickness significantly reduce the magnitude and asymmetry of the warpage. Furthermore, using low-stress, low-resistivity metal replacement such as Ruthenium, alters the wafer deformation pattern from radially asymmetric to symmetric form, enabling further opportunities to minimize warpage by isotropic measures. Strategically, focusing on obtaining a symmetric deformation first, followed by applying warpage mitigation techniques is deemed to be a feasible approach. Using this method, the wafer warpage is shown to potentially reduce below 10 μm with 128 layer 3-D NAND, thus offering a safely scalable path forward.
科研通智能强力驱动
Strongly Powered by AbleSci AI