亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of Diagnostic Performance of Dermatologists Cooperating With a Convolutional Neural Network in a Prospective Clinical Study

医学 卷积神经网络 前瞻性队列研究 梅德林 皮肤病科 医学物理学 人工智能 病理 政治学 计算机科学 法学
作者
Julia K. Winkler,Andreas Blum,Katharina Kommoss,Alexander Enk,Ferdinand Toberer,Albert Rosenberger,Holger A. Haenssle
出处
期刊:JAMA Dermatology [American Medical Association]
卷期号:159 (6): 621-621 被引量:23
标识
DOI:10.1001/jamadermatol.2023.0905
摘要

Importance Studies suggest that convolutional neural networks (CNNs) perform equally to trained dermatologists in skin lesion classification tasks. Despite the approval of the first neural networks for clinical use, prospective studies demonstrating benefits of human with machine cooperation are lacking. Objective To assess whether dermatologists benefit from cooperation with a market-approved CNN in classifying melanocytic lesions. Design, Setting, and Participants In this prospective diagnostic 2-center study, dermatologists performed skin cancer screenings using naked-eye examination and dermoscopy. Dermatologists graded suspect melanocytic lesions by the probability of malignancy (range 0-1, threshold for malignancy ≥0.5) and indicated management decisions (no action, follow-up, excision). Next, dermoscopic images of suspect lesions were assessed by a market-approved CNN, Moleanalyzer Pro (FotoFinder Systems). The CNN malignancy scores (range 0-1, threshold for malignancy ≥0.5) were transferred to dermatologists with the request to re-evaluate lesions and revise initial decisions in consideration of CNN results. Reference diagnoses were based on histopathologic examination in 125 (54.8%) lesions or, in the case of nonexcised lesions, on clinical follow-up data and expert consensus. Data were collected from October 2020 to October 2021. Main Outcomes and Measures Primary outcome measures were diagnostic sensitivity and specificity of dermatologists alone and dermatologists cooperating with the CNN. Accuracy and receiver operator characteristic area under the curve (ROC AUC) were considered as additional measures. Results A total of 22 dermatologists detected 228 suspect melanocytic lesions (190 nevi, 38 melanomas) in 188 patients (mean [range] age, 53.4 [19-91] years; 97 [51.6%] male patients). Diagnostic sensitivity and specificity significantly improved when dermatologists additionally integrated CNN results into decision-making (mean sensitivity from 84.2% [95% CI, 69.6%-92.6%] to 100.0% [95% CI, 90.8%-100.0%]; P = .03; mean specificity from 72.1% [95% CI, 65.3%-78.0%] to 83.7% [95% CI, 77.8%-88.3%]; P < .001; mean accuracy from 74.1% [95% CI, 68.1%-79.4%] to 86.4% [95% CI, 81.3%-90.3%]; P < .001; and mean ROC AUC from 0.895 [95% CI, 0.836-0.954] to 0.968 [95% CI, 0.948-0.988]; P = .005). In addition, the CNN alone achieved a comparable sensitivity, higher specificity, and higher diagnostic accuracy compared with dermatologists alone in classifying melanocytic lesions. Moreover, unnecessary excisions of benign nevi were reduced by 19.2%, from 104 (54.7%) of 190 benign nevi to 84 nevi when dermatologists cooperated with the CNN ( P < .001). Most lesions were examined by dermatologists with 2 to 5 years (96, 42.1%) or less than 2 years of experience (78, 34.2%); others (54, 23.7%) were evaluated by dermatologists with more than 5 years of experience. Dermatologists with less dermoscopy experience cooperating with the CNN had the most diagnostic improvement compared with more experienced dermatologists. Conclusions and Relevance In this prospective diagnostic study, these findings suggest that dermatologists may improve their performance when they cooperate with the market-approved CNN and that a broader application of this human with machine approach could be beneficial for dermatologists and patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2568269431完成签到,获得积分10
1秒前
esbd完成签到,获得积分10
2秒前
iehaoang完成签到 ,获得积分10
3秒前
3秒前
5秒前
rubbish完成签到 ,获得积分10
7秒前
ShellyMaya完成签到 ,获得积分10
8秒前
鸣蜩阿六发布了新的文献求助10
8秒前
9秒前
吴彦祖发布了新的文献求助10
9秒前
隐形曼青应助温暖的化蛹采纳,获得10
10秒前
daidai完成签到 ,获得积分10
16秒前
20秒前
moyu123完成签到,获得积分10
20秒前
moyu123发布了新的文献求助10
24秒前
Owen应助鸣蜩阿六采纳,获得10
25秒前
雷天雨发布了新的文献求助10
30秒前
Jasper应助温暖锦程采纳,获得10
32秒前
打打应助moyu123采纳,获得10
36秒前
七七发布了新的文献求助30
37秒前
40秒前
44秒前
45秒前
樱桃猴子应助ASASAS采纳,获得50
47秒前
超脱闲人发布了新的文献求助10
47秒前
马文杰完成签到 ,获得积分10
49秒前
蜉蝣发布了新的文献求助10
51秒前
吴彦祖发布了新的文献求助10
51秒前
慕青应助RoseTaurus采纳,获得10
55秒前
JMchiefEditor完成签到,获得积分10
57秒前
雷天雨发布了新的文献求助10
1分钟前
蜉蝣完成签到,获得积分10
1分钟前
义气幼珊完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助dpp采纳,获得10
1分钟前
充电宝应助用户12306采纳,获得10
1分钟前
snah完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3256828
求助须知:如何正确求助?哪些是违规求助? 2898958
关于积分的说明 8303154
捐赠科研通 2568204
什么是DOI,文献DOI怎么找? 1394905
科研通“疑难数据库(出版商)”最低求助积分说明 652924
邀请新用户注册赠送积分活动 630631