亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of Diagnostic Performance of Dermatologists Cooperating With a Convolutional Neural Network in a Prospective Clinical Study

医学 卷积神经网络 前瞻性队列研究 梅德林 皮肤病科 医学物理学 人工智能 病理 政治学 计算机科学 法学
作者
Julia K. Winkler,Andreas Blum,Katharina Kommoss,Alexander Enk,Ferdinand Toberer,Albert Rosenberger,Holger A. Haenssle
出处
期刊:JAMA Dermatology [American Medical Association]
卷期号:159 (6): 621-621 被引量:70
标识
DOI:10.1001/jamadermatol.2023.0905
摘要

Importance Studies suggest that convolutional neural networks (CNNs) perform equally to trained dermatologists in skin lesion classification tasks. Despite the approval of the first neural networks for clinical use, prospective studies demonstrating benefits of human with machine cooperation are lacking. Objective To assess whether dermatologists benefit from cooperation with a market-approved CNN in classifying melanocytic lesions. Design, Setting, and Participants In this prospective diagnostic 2-center study, dermatologists performed skin cancer screenings using naked-eye examination and dermoscopy. Dermatologists graded suspect melanocytic lesions by the probability of malignancy (range 0-1, threshold for malignancy ≥0.5) and indicated management decisions (no action, follow-up, excision). Next, dermoscopic images of suspect lesions were assessed by a market-approved CNN, Moleanalyzer Pro (FotoFinder Systems). The CNN malignancy scores (range 0-1, threshold for malignancy ≥0.5) were transferred to dermatologists with the request to re-evaluate lesions and revise initial decisions in consideration of CNN results. Reference diagnoses were based on histopathologic examination in 125 (54.8%) lesions or, in the case of nonexcised lesions, on clinical follow-up data and expert consensus. Data were collected from October 2020 to October 2021. Main Outcomes and Measures Primary outcome measures were diagnostic sensitivity and specificity of dermatologists alone and dermatologists cooperating with the CNN. Accuracy and receiver operator characteristic area under the curve (ROC AUC) were considered as additional measures. Results A total of 22 dermatologists detected 228 suspect melanocytic lesions (190 nevi, 38 melanomas) in 188 patients (mean [range] age, 53.4 [19-91] years; 97 [51.6%] male patients). Diagnostic sensitivity and specificity significantly improved when dermatologists additionally integrated CNN results into decision-making (mean sensitivity from 84.2% [95% CI, 69.6%-92.6%] to 100.0% [95% CI, 90.8%-100.0%]; P = .03; mean specificity from 72.1% [95% CI, 65.3%-78.0%] to 83.7% [95% CI, 77.8%-88.3%]; P < .001; mean accuracy from 74.1% [95% CI, 68.1%-79.4%] to 86.4% [95% CI, 81.3%-90.3%]; P < .001; and mean ROC AUC from 0.895 [95% CI, 0.836-0.954] to 0.968 [95% CI, 0.948-0.988]; P = .005). In addition, the CNN alone achieved a comparable sensitivity, higher specificity, and higher diagnostic accuracy compared with dermatologists alone in classifying melanocytic lesions. Moreover, unnecessary excisions of benign nevi were reduced by 19.2%, from 104 (54.7%) of 190 benign nevi to 84 nevi when dermatologists cooperated with the CNN ( P < .001). Most lesions were examined by dermatologists with 2 to 5 years (96, 42.1%) or less than 2 years of experience (78, 34.2%); others (54, 23.7%) were evaluated by dermatologists with more than 5 years of experience. Dermatologists with less dermoscopy experience cooperating with the CNN had the most diagnostic improvement compared with more experienced dermatologists. Conclusions and Relevance In this prospective diagnostic study, these findings suggest that dermatologists may improve their performance when they cooperate with the market-approved CNN and that a broader application of this human with machine approach could be beneficial for dermatologists and patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
19秒前
23秒前
寻道图强应助科研通管家采纳,获得50
29秒前
Jasper应助诉与山风听采纳,获得10
32秒前
Tree_QD完成签到 ,获得积分10
32秒前
CMUSK完成签到,获得积分10
33秒前
1分钟前
yang发布了新的文献求助10
1分钟前
优美香露发布了新的文献求助10
1分钟前
研友_VZG7GZ应助优美香露采纳,获得30
1分钟前
2分钟前
2分钟前
Carol发布了新的文献求助10
2分钟前
2分钟前
2分钟前
优美香露发布了新的文献求助30
2分钟前
善学以致用应助优美香露采纳,获得30
2分钟前
2分钟前
ajing发布了新的文献求助10
2分钟前
2分钟前
3分钟前
zwang688完成签到,获得积分10
3分钟前
OCDer发布了新的文献求助10
3分钟前
3分钟前
yang发布了新的文献求助10
3分钟前
OCDer完成签到,获得积分0
3分钟前
4分钟前
Zima发布了新的文献求助10
4分钟前
Zima完成签到,获得积分10
4分钟前
年轻绮波完成签到,获得积分10
4分钟前
4分钟前
4分钟前
jianglan完成签到,获得积分10
4分钟前
4分钟前
jason完成签到 ,获得积分10
4分钟前
4分钟前
刻苦的小土豆完成签到 ,获得积分10
5分钟前
香蕉觅云应助如意修洁采纳,获得10
5分钟前
雨jia完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657952
求助须知:如何正确求助?哪些是违规求助? 4815338
关于积分的说明 15080712
捐赠科研通 4816255
什么是DOI,文献DOI怎么找? 2577211
邀请新用户注册赠送积分活动 1532242
关于科研通互助平台的介绍 1490814