医学
自身抗体
队列
机器学习
医学诊断
痹症科
健康档案
考试(生物学)
队列研究
人工智能
疾病
内科学
免疫学
计算机科学
病理
抗体
医疗保健
经济
古生物学
生物
经济增长
作者
Iain S. Forrest,Ben Omega Petrazzini,Áine Duffy,Joshua K. Park,Anya J. O’Neal,Daniel M. Jordan,Ghislain Rocheleau,Girish N. Nadkarni,Judy H. Cho,Ashira Blazer,Ron Do
标识
DOI:10.1038/s41467-023-37996-7
摘要
Abstract Systemic autoimmune rheumatic diseases (SARDs) can lead to irreversible damage if left untreated, yet these patients often endure long diagnostic journeys before being diagnosed and treated. Machine learning may help overcome the challenges of diagnosing SARDs and inform clinical decision-making. Here, we developed and tested a machine learning model to identify patients who should receive rheumatological evaluation for SARDs using longitudinal electronic health records of 161,584 individuals from two institutions. The model demonstrated high performance for predicting cases of autoantibody-tested individuals in a validation set, an external test set, and an independent cohort with a broader case definition. This approach identified more individuals for autoantibody testing compared with current clinical standards and a greater proportion of autoantibody carriers among those tested. Diagnoses of SARDs and other autoimmune conditions increased with higher model probabilities. The model detected a need for autoantibody testing and rheumatology encounters up to five years before the test date and assessment date, respectively. Altogether, these findings illustrate that the clinical manifestations of a diverse array of autoimmune conditions are detectable in electronic health records using machine learning, which may help systematize and accelerate autoimmune testing.
科研通智能强力驱动
Strongly Powered by AbleSci AI