Overall sensing method for the three-dimensional stress of roadway via machine learning on SHM data

屋顶 压力(语言学) 维数(图论) 计算机科学 领域(数学) 结构工程 安全监测 工程类 数学 哲学 语言学 生物技术 纯数学 生物
作者
Xuyan Tan,Weizhong Chen,Hou Gao,Changkun Qin,Wusheng Zhao
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:23 (1): 175-186
标识
DOI:10.1177/14759217231168214
摘要

Monitoring roof stress is essential for identifying structural anomalies and preventing disasters during underground construction. However, current sensors mainly focus on monitoring in one dimension, and it is challenging to obtain the mechanical status of the overall roof owing to the limitations of sensor numbers and the working environment. Therefore, we aimed to present an overall sensing method for the three-dimensional stress status of a roadway roof through machine learning (ML) based on limited monitoring points. First, the framework of the overall sensing method was developed, where a three-dimensional stress sensor was created to obtain the mechanical behaviours of some sensitive positions, and an ML model driven by the physical mechanism and limited monitoring data was developed to derive the overall stress situation. The developed sensor was installed in a case study, and the ML model was formulated based on the field-monitoring data. A series of experiments were conducted to derive the stress distribution of the roadway roof in the study case. Furthermore, a numerical simulation was conducted to compare the reasonability of the deduction results. The experimental results indicated that the deduction results of roof stress were reasonable, and thus the proposed sensing method is reliable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
中和皇极应助zzbbzz采纳,获得10
刚刚
思源应助麦子采纳,获得10
1秒前
2秒前
yhl666发布了新的文献求助10
4秒前
杳鸢应助小孙采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
5秒前
wanci应助科研通管家采纳,获得10
5秒前
完美世界应助科研通管家采纳,获得10
5秒前
cdercder应助科研通管家采纳,获得30
5秒前
hhhblabla应助科研通管家采纳,获得20
5秒前
hhhblabla应助科研通管家采纳,获得20
5秒前
5秒前
丰知然应助科研通管家采纳,获得10
5秒前
丰知然应助科研通管家采纳,获得10
5秒前
ceeray23应助科研通管家采纳,获得10
5秒前
丰知然应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
6秒前
丰知然应助科研通管家采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
英姑应助科研通管家采纳,获得10
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
Owen应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
丰知然应助科研通管家采纳,获得10
6秒前
ceeray23应助科研通管家采纳,获得10
6秒前
青黛发布了新的文献求助10
7秒前
8秒前
金牌小魚仔完成签到,获得积分10
11秒前
zzxp完成签到,获得积分10
12秒前
小宋应助xmy采纳,获得50
13秒前
麦子发布了新的文献求助10
13秒前
英姑应助毕十三采纳,获得10
14秒前
bkagyin应助emilybei采纳,获得10
14秒前
14秒前
15秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462689
求助须知:如何正确求助?哪些是违规求助? 3056214
关于积分的说明 9050947
捐赠科研通 2745844
什么是DOI,文献DOI怎么找? 1506601
科研通“疑难数据库(出版商)”最低求助积分说明 696181
邀请新用户注册赠送积分活动 695693