The Construction and Validation of a new Predictive Model for Overall Survival of Clear Cell Renal Cell Carcinoma Patients with Bone Metastasis Based on Machine Learning Algorithm

医学 肾透明细胞癌 接收机工作特性 肾细胞癌 算法 逻辑回归 转移 骨转移 队列 内科学 肿瘤科 阶段(地层学) T级 机器学习 癌症 计算机科学 古生物学 生物
作者
Yijun Le,Wen Xu,Wei Guo
出处
期刊:Technology in Cancer Research & Treatment [SAGE]
卷期号:22 被引量:4
标识
DOI:10.1177/15330338231165131
摘要

Background This study aimed to develop and validate predictive models based on machine learning (ML) algorithms for patients with bone metastases (BM) from clear cell renal cell carcinoma (ccRCC) and to identify appropriate models for clinical decision-making. Methods In this retrospective study, we obtained information on ccRCC patients diagnosed with bone metastasis (ccRCC-BM), from the Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2015 ( n = 1490), and collected clinicopathological information on ccRCC-BM patients at our hospital ( n = 42). We then applied four ML algorithms: extreme gradient boosting (XGB), logistic regression (LR), random forest (RF), and Naive Bayes model (NB), to develop models for predicting the overall survival (OS) of patients with bone metastasis from ccRCC. In the SEER dataset, 70% of the patients were randomly divided into training cohorts and the remaining 30% were used as validation cohorts. Data from our center were used as an external validation cohort. Finally, we evaluated the model performance using receiver operating characteristic curves (ROC), area under the ROC curve (AUC), accuracy, specificity, and F1-scores. Results The mean survival times of patients in the SEER and Chinese cohort were 21.8 months and 37.0 months, respectively. Age, marital status, grade, T stage, N stage, tumor size, brain metastasis, liver metastasis, lung metastasis, and surgery were included in the ML model. We observed that all four ML algorithms performed well in predicting the 1-year and 3-year OS of patients with ccRCC-BM. Conclusion ML is useful in predicting the survival of patients with ccRCC-BM, and ML models can play a positive role in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逍遥完成签到,获得积分10
1秒前
蚂蚁发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
风中的小懒猪完成签到,获得积分10
2秒前
single发布了新的文献求助10
3秒前
hql发布了新的文献求助10
4秒前
YY-Bubble发布了新的文献求助30
5秒前
十二点一刻完成签到,获得积分10
6秒前
qiuyue发布了新的文献求助10
7秒前
7秒前
9秒前
9秒前
chenyinglin发布了新的文献求助10
9秒前
橙zy完成签到,获得积分10
9秒前
高越完成签到,获得积分10
9秒前
10秒前
于生有你完成签到,获得积分10
10秒前
11秒前
12秒前
12秒前
14秒前
IAMXC发布了新的文献求助10
14秒前
14秒前
漆玖发布了新的文献求助30
14秒前
七个娃娃发布了新的文献求助10
15秒前
15秒前
wulin314发布了新的文献求助10
16秒前
ferry123发布了新的文献求助10
16秒前
无语的凡梦完成签到,获得积分10
17秒前
隐形曼青应助仁爱的雁芙采纳,获得10
17秒前
燕燕发布了新的文献求助10
18秒前
赘婿应助诚心的若南采纳,获得10
19秒前
19秒前
19秒前
chenyinglin完成签到,获得积分10
20秒前
稳重雪冥发布了新的文献求助10
20秒前
810636174完成签到,获得积分10
20秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148222
求助须知:如何正确求助?哪些是违规求助? 2799394
关于积分的说明 7834549
捐赠科研通 2456604
什么是DOI,文献DOI怎么找? 1307321
科研通“疑难数据库(出版商)”最低求助积分说明 628124
版权声明 601655