Mixed-Integer Programming vs. Constraint Programming for Shop Scheduling Problems: New Results and Outlook

整数规划 计算机科学 数学优化 约束规划 调度(生产过程) 作业车间调度 流水车间调度 地铁列车时刻表 数学 随机规划 操作系统
作者
Bahman Naderi,Rubén Ruíz,Vahid Roshanaei
出处
期刊:Informs Journal on Computing 卷期号:35 (4): 817-843 被引量:60
标识
DOI:10.1287/ijoc.2023.1287
摘要

Constraint programming (CP) has been recently in the spotlight after new CP-based procedures have been incorporated into state-of-the-art solvers, most notably the CP Optimizer from IBM. Classical CP solvers were only capable of guaranteeing the optimality of a solution, but they could not provide bounds for the integer feasible solutions found if interrupted prematurely due to, say, time limits. New versions, however, provide bounds and optimality guarantees, effectively making CP a viable alternative to more traditional mixed-integer programming (MIP) models and solvers. We capitalize on these developments and conduct a computational evaluation of MIP and CP models on 12 select scheduling problems. 1 We carefully chose these 12 problems to represent a wide variety of scheduling problems that occur in different service and manufacturing settings. We also consider basic and well-studied simplified problems. These scheduling settings range from pure sequencing (e.g., flow shop and open shop) or joint assignment-sequencing (e.g., distributed flow shop and hybrid flow shop) to pure assignment (i.e., parallel machine) scheduling problems. We present MIP and CP models for each variant of these problems and evaluate their performance over 17 relevant and standard benchmarks that we identified in the literature. The computational campaign encompasses almost 6,623 experiments and evaluates the MIP and CP models along five dimensions of problem characteristics, objective function, decision variables, input parameters, and quality of bounds. We establish the areas in which each one of these models performs well and recognize their conceivable reasons. The obtained results indicate that CP sets new limits concerning the maximum problem size that can be solved using off-the-shelf exact techniques. History: Accepted by Pascal Van Hentenryck, Area Editor for Computational Modeling: Methods & Analysis. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.1287 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2021.0326 ) at ( http://dx.doi.org/10.5281/zenodo.7541223 ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助qqq采纳,获得10
刚刚
在水一方应助xqc采纳,获得30
1秒前
2秒前
FashionBoy应助大玉124采纳,获得10
2秒前
orixero应助tojobbb采纳,获得10
2秒前
尹晨熙发布了新的文献求助10
3秒前
科研通AI6应助坚强白凝采纳,获得10
3秒前
3秒前
3秒前
辣小扬发布了新的文献求助10
3秒前
4秒前
4秒前
pfshan发布了新的文献求助10
4秒前
4秒前
黑鲨完成签到 ,获得积分10
5秒前
5秒前
Hina完成签到,获得积分10
5秒前
糖糖完成签到,获得积分10
5秒前
5秒前
王小小读文献完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
科研通AI2S应助头哥采纳,获得20
8秒前
8秒前
qqq关闭了qqq文献求助
8秒前
狂野白梅发布了新的文献求助10
8秒前
糖糖发布了新的文献求助10
9秒前
知之发布了新的文献求助10
9秒前
笃定发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
WangJ1018发布了新的文献求助10
11秒前
阿迪发布了新的文献求助10
11秒前
Ivoir完成签到,获得积分10
11秒前
Glufo完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609726
求助须知:如何正确求助?哪些是违规求助? 4694294
关于积分的说明 14881987
捐赠科研通 4720227
什么是DOI,文献DOI怎么找? 2544836
邀请新用户注册赠送积分活动 1509735
关于科研通互助平台的介绍 1472996