亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A utility-based machine learning-driven personalized lifestyle recommendation for cardiovascular disease prevention

疾病 计算机科学 机器学习 个性化医疗 功能(生物学) 人工智能 风险分析(工程) 生成语法 医学 生物信息学 进化生物学 生物 病理
作者
Ayşe Kutluhan Doğan,Yuxuan Li,Chiwetalu Peter Odo,Kalyani Sonawane,Ying Lin,Chenang Liu
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:141: 104342-104342 被引量:6
标识
DOI:10.1016/j.jbi.2023.104342
摘要

In recent decades, cardiovascular disease (CVD) has become the leading cause of death in most countries of the world. Since many types of CVD are preventable by modifying lifestyle behaviors, the objective of this paper is to develop an effective personalized lifestyle recommendation algorithm for reducing the risk of common types of CVD. However, in practice, the underlying relationships between the risk factors (e.g., lifestyles, blood pressure, etc.) and disease onset is highly complex. It is also challenging to identify effective modification recommendations for different individuals due to individual's effort-benefits consideration and uncertainties in disease progression. Therefore, to address these challenges, this study developed a novel data-driven approach for personalized lifestyle behaviors recommendation based on machine learning and a personalized exponential utility function model. The contributions of this work can be summarized into three aspects: (1) a classification-based prediction model is implemented to predict the CVD risk based on the condition of risk factors; (2) the generative adversarial network (GAN) is incorporated to learn the underlying relationship between risk factors, as well as quantify the uncertainty of disease progression under lifestyle modifications; and (3) a novel personalized exponential utility function model is proposed to evaluate the modifications' utilities with respect to CVD risk reduction, individual's effort-benefits consideration, and disease progression uncertainty, as well as identify the optimal modification for each individual. The effectiveness of the proposed method is validated through an open-access CVD dataset. The results demonstrate that the personalized lifestyle modification recommended by the proposed methodology has the potential to effectively reduce the CVD risk. Thus, it is promising to be further applied to real-world cases for CVD prevention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陆康完成签到 ,获得积分10
1秒前
4秒前
充电宝应助艺玲采纳,获得10
5秒前
Muhammad发布了新的文献求助10
8秒前
maher完成签到,获得积分10
10秒前
13秒前
18秒前
艺玲发布了新的文献求助10
19秒前
赣南橙发布了新的文献求助10
23秒前
29秒前
Muhammad发布了新的文献求助10
34秒前
36秒前
烂漫的绿茶完成签到 ,获得积分10
38秒前
42秒前
赣南橙完成签到,获得积分10
45秒前
雨相所至发布了新的文献求助10
47秒前
光亮梦松发布了新的文献求助10
54秒前
雨相所至完成签到,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
苹果颖发布了新的文献求助10
1分钟前
我爱科研完成签到,获得积分10
1分钟前
Michaelialzm完成签到,获得积分10
1分钟前
1分钟前
Mark_He发布了新的文献求助10
1分钟前
大气的玉米完成签到 ,获得积分10
1分钟前
nhzz2023完成签到 ,获得积分0
2分钟前
共享精神应助光亮梦松采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
船长完成签到,获得积分10
2分钟前
2分钟前
2分钟前
苹果颖发布了新的文献求助10
2分钟前
Orange应助HaonanZhang采纳,获得10
2分钟前
2分钟前
苹果颖完成签到,获得积分10
2分钟前
雪白砖家完成签到 ,获得积分10
2分钟前
2分钟前
生椰拿铁完成签到 ,获得积分10
2分钟前
香樟沐雪发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554741
求助须知:如何正确求助?哪些是违规求助? 4639342
关于积分的说明 14656067
捐赠科研通 4581239
什么是DOI,文献DOI怎么找? 2512662
邀请新用户注册赠送积分活动 1487403
关于科研通互助平台的介绍 1458322