清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A utility-based machine learning-driven personalized lifestyle recommendation for cardiovascular disease prevention

疾病 计算机科学 机器学习 个性化医疗 功能(生物学) 人工智能 风险分析(工程) 生成语法 医学 生物信息学 进化生物学 生物 病理
作者
Ayşe Kutluhan Doğan,Yuxuan Li,Chiwetalu Peter Odo,Kalyani Sonawane,Ying Lin,Chenang Liu
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:141: 104342-104342 被引量:6
标识
DOI:10.1016/j.jbi.2023.104342
摘要

In recent decades, cardiovascular disease (CVD) has become the leading cause of death in most countries of the world. Since many types of CVD are preventable by modifying lifestyle behaviors, the objective of this paper is to develop an effective personalized lifestyle recommendation algorithm for reducing the risk of common types of CVD. However, in practice, the underlying relationships between the risk factors (e.g., lifestyles, blood pressure, etc.) and disease onset is highly complex. It is also challenging to identify effective modification recommendations for different individuals due to individual's effort-benefits consideration and uncertainties in disease progression. Therefore, to address these challenges, this study developed a novel data-driven approach for personalized lifestyle behaviors recommendation based on machine learning and a personalized exponential utility function model. The contributions of this work can be summarized into three aspects: (1) a classification-based prediction model is implemented to predict the CVD risk based on the condition of risk factors; (2) the generative adversarial network (GAN) is incorporated to learn the underlying relationship between risk factors, as well as quantify the uncertainty of disease progression under lifestyle modifications; and (3) a novel personalized exponential utility function model is proposed to evaluate the modifications' utilities with respect to CVD risk reduction, individual's effort-benefits consideration, and disease progression uncertainty, as well as identify the optimal modification for each individual. The effectiveness of the proposed method is validated through an open-access CVD dataset. The results demonstrate that the personalized lifestyle modification recommended by the proposed methodology has the potential to effectively reduce the CVD risk. Thus, it is promising to be further applied to real-world cases for CVD prevention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cxm完成签到,获得积分10
3秒前
菜鸟学习完成签到 ,获得积分10
4秒前
wang发布了新的文献求助10
6秒前
chen完成签到 ,获得积分10
6秒前
Zhahu完成签到 ,获得积分10
7秒前
8秒前
wang完成签到,获得积分10
14秒前
cxm发布了新的文献求助10
21秒前
ShishanXue完成签到 ,获得积分10
29秒前
TOUHOUU完成签到 ,获得积分10
44秒前
叁月二完成签到 ,获得积分10
46秒前
57秒前
sidashu发布了新的文献求助10
1分钟前
浮游应助sidashu采纳,获得10
1分钟前
科目三应助Pengzhuhuai采纳,获得10
1分钟前
w0304hf完成签到,获得积分10
1分钟前
漫天飞雪_寒江孤影完成签到 ,获得积分10
1分钟前
娟儿完成签到 ,获得积分10
1分钟前
李玉兰完成签到 ,获得积分10
2分钟前
慧慧34完成签到 ,获得积分10
2分钟前
舒心无剑完成签到 ,获得积分10
2分钟前
2分钟前
双眼皮跳蚤完成签到,获得积分0
2分钟前
奋斗的妙海完成签到 ,获得积分0
2分钟前
zhuosht完成签到 ,获得积分10
2分钟前
杨111完成签到 ,获得积分10
2分钟前
2分钟前
研友_851KE8发布了新的文献求助10
2分钟前
herpes完成签到 ,获得积分0
2分钟前
quantumdot完成签到,获得积分10
2分钟前
quantumdot发布了新的文献求助20
3分钟前
刘丰完成签到 ,获得积分10
3分钟前
peiter完成签到 ,获得积分10
3分钟前
苏子墨完成签到,获得积分10
3分钟前
科研通AI6应助quantumdot采纳,获得10
3分钟前
研友_VZG7GZ应助CC采纳,获得50
3分钟前
4分钟前
CC发布了新的文献求助50
4分钟前
CadoreK完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5510044
求助须知:如何正确求助?哪些是违规求助? 4604686
关于积分的说明 14490048
捐赠科研通 4539706
什么是DOI,文献DOI怎么找? 2487658
邀请新用户注册赠送积分活动 1469937
关于科研通互助平台的介绍 1442339