已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A utility-based machine learning-driven personalized lifestyle recommendation for cardiovascular disease prevention

疾病 计算机科学 机器学习 个性化医疗 功能(生物学) 人工智能 风险分析(工程) 生成语法 医学 生物信息学 进化生物学 生物 病理
作者
Ayşe Kutluhan Doğan,Yuxuan Li,Chiwetalu Peter Odo,Kalyani Sonawane,Ying Lin,Chenang Liu
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:141: 104342-104342 被引量:6
标识
DOI:10.1016/j.jbi.2023.104342
摘要

In recent decades, cardiovascular disease (CVD) has become the leading cause of death in most countries of the world. Since many types of CVD are preventable by modifying lifestyle behaviors, the objective of this paper is to develop an effective personalized lifestyle recommendation algorithm for reducing the risk of common types of CVD. However, in practice, the underlying relationships between the risk factors (e.g., lifestyles, blood pressure, etc.) and disease onset is highly complex. It is also challenging to identify effective modification recommendations for different individuals due to individual's effort-benefits consideration and uncertainties in disease progression. Therefore, to address these challenges, this study developed a novel data-driven approach for personalized lifestyle behaviors recommendation based on machine learning and a personalized exponential utility function model. The contributions of this work can be summarized into three aspects: (1) a classification-based prediction model is implemented to predict the CVD risk based on the condition of risk factors; (2) the generative adversarial network (GAN) is incorporated to learn the underlying relationship between risk factors, as well as quantify the uncertainty of disease progression under lifestyle modifications; and (3) a novel personalized exponential utility function model is proposed to evaluate the modifications' utilities with respect to CVD risk reduction, individual's effort-benefits consideration, and disease progression uncertainty, as well as identify the optimal modification for each individual. The effectiveness of the proposed method is validated through an open-access CVD dataset. The results demonstrate that the personalized lifestyle modification recommended by the proposed methodology has the potential to effectively reduce the CVD risk. Thus, it is promising to be further applied to real-world cases for CVD prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
big龙应助番茄采纳,获得10
1秒前
Ico发布了新的文献求助10
1秒前
agrlook发布了新的文献求助10
2秒前
2秒前
111完成签到 ,获得积分10
2秒前
2秒前
上上签完成签到,获得积分10
3秒前
高兴孤云完成签到 ,获得积分10
4秒前
leotao完成签到,获得积分10
4秒前
23完成签到 ,获得积分10
5秒前
崔裕敬发布了新的文献求助10
5秒前
大模型应助芽芽鸭采纳,获得10
6秒前
6秒前
6秒前
6秒前
上上签发布了新的文献求助10
6秒前
7秒前
7秒前
qu发布了新的文献求助10
8秒前
11秒前
11秒前
11秒前
11秒前
斯文败类应助南风不竞采纳,获得10
11秒前
12秒前
健康幸福平安完成签到,获得积分10
13秒前
丽丽完成签到 ,获得积分10
14秒前
魁梧的傲芙完成签到,获得积分10
16秒前
缥缈的立辉完成签到,获得积分10
17秒前
小明应助GD采纳,获得50
17秒前
清茶一抹发布了新的文献求助10
17秒前
17秒前
烂泥完成签到 ,获得积分10
18秒前
18秒前
zhoudaien发布了新的文献求助10
18秒前
19秒前
19秒前
KooKoo发布了新的文献求助10
21秒前
21秒前
科研通AI6应助魁梧的傲芙采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462829
求助须知:如何正确求助?哪些是违规求助? 4567618
关于积分的说明 14310922
捐赠科研通 4493448
什么是DOI,文献DOI怎么找? 2461649
邀请新用户注册赠送积分活动 1450768
关于科研通互助平台的介绍 1425919