A utility-based machine learning-driven personalized lifestyle recommendation for cardiovascular disease prevention

疾病 计算机科学 机器学习 个性化医疗 功能(生物学) 人工智能 风险分析(工程) 生成语法 医学 生物信息学 进化生物学 生物 病理
作者
Ayşe Kutluhan Doğan,Yuxuan Li,Chiwetalu Peter Odo,Kalyani Sonawane,Ying Lin,Chenang Liu
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:141: 104342-104342 被引量:6
标识
DOI:10.1016/j.jbi.2023.104342
摘要

In recent decades, cardiovascular disease (CVD) has become the leading cause of death in most countries of the world. Since many types of CVD are preventable by modifying lifestyle behaviors, the objective of this paper is to develop an effective personalized lifestyle recommendation algorithm for reducing the risk of common types of CVD. However, in practice, the underlying relationships between the risk factors (e.g., lifestyles, blood pressure, etc.) and disease onset is highly complex. It is also challenging to identify effective modification recommendations for different individuals due to individual's effort-benefits consideration and uncertainties in disease progression. Therefore, to address these challenges, this study developed a novel data-driven approach for personalized lifestyle behaviors recommendation based on machine learning and a personalized exponential utility function model. The contributions of this work can be summarized into three aspects: (1) a classification-based prediction model is implemented to predict the CVD risk based on the condition of risk factors; (2) the generative adversarial network (GAN) is incorporated to learn the underlying relationship between risk factors, as well as quantify the uncertainty of disease progression under lifestyle modifications; and (3) a novel personalized exponential utility function model is proposed to evaluate the modifications' utilities with respect to CVD risk reduction, individual's effort-benefits consideration, and disease progression uncertainty, as well as identify the optimal modification for each individual. The effectiveness of the proposed method is validated through an open-access CVD dataset. The results demonstrate that the personalized lifestyle modification recommended by the proposed methodology has the potential to effectively reduce the CVD risk. Thus, it is promising to be further applied to real-world cases for CVD prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jonathan完成签到,获得积分10
刚刚
羊羊发布了新的文献求助10
1秒前
榛糕李完成签到,获得积分10
2秒前
健忘芹完成签到,获得积分20
2秒前
2秒前
3秒前
bkagyin应助摆哥采纳,获得10
4秒前
刘宸希完成签到 ,获得积分10
4秒前
6秒前
辛勤夜柳发布了新的文献求助10
6秒前
7秒前
8秒前
打打应助怕孤独的海瑶采纳,获得10
8秒前
Zenia应助小鱼采纳,获得10
9秒前
9秒前
默默的斑马完成签到,获得积分10
9秒前
科研大印发布了新的文献求助10
10秒前
Lucas应助RunsenXu采纳,获得10
10秒前
科研通AI6应助www采纳,获得10
10秒前
shuang完成签到 ,获得积分10
11秒前
Ysk完成签到,获得积分10
11秒前
脑洞疼应助MCL1021采纳,获得10
12秒前
智丹发布了新的文献求助10
13秒前
sci来来来完成签到,获得积分10
13秒前
wlscj给传统的孤丝的求助进行了留言
13秒前
WTaMi发布了新的文献求助10
14秒前
朱博超发布了新的文献求助10
15秒前
傻子也能搞学术吗完成签到 ,获得积分10
15秒前
16秒前
16秒前
无花果应助科研大印采纳,获得10
17秒前
Akim应助ltxinanjiao采纳,获得10
18秒前
sci来来来发布了新的文献求助10
18秒前
慕青应助LIO采纳,获得10
19秒前
19秒前
李爱国应助摆哥采纳,获得10
20秒前
21秒前
21秒前
www发布了新的文献求助10
21秒前
shama发布了新的文献求助10
21秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226445
求助须知:如何正确求助?哪些是违规求助? 4397958
关于积分的说明 13687854
捐赠科研通 4262492
什么是DOI,文献DOI怎么找? 2339139
邀请新用户注册赠送积分活动 1336507
关于科研通互助平台的介绍 1292544