A utility-based machine learning-driven personalized lifestyle recommendation for cardiovascular disease prevention

疾病 计算机科学 机器学习 个性化医疗 功能(生物学) 人工智能 风险分析(工程) 生成语法 医学 生物信息学 病理 进化生物学 生物
作者
Ayşe Kutluhan Doğan,Yuxuan Li,Chiwetalu Peter Odo,Kalyani Sonawane,Ying Lin,Chenang Liu
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:141: 104342-104342 被引量:6
标识
DOI:10.1016/j.jbi.2023.104342
摘要

In recent decades, cardiovascular disease (CVD) has become the leading cause of death in most countries of the world. Since many types of CVD are preventable by modifying lifestyle behaviors, the objective of this paper is to develop an effective personalized lifestyle recommendation algorithm for reducing the risk of common types of CVD. However, in practice, the underlying relationships between the risk factors (e.g., lifestyles, blood pressure, etc.) and disease onset is highly complex. It is also challenging to identify effective modification recommendations for different individuals due to individual's effort-benefits consideration and uncertainties in disease progression. Therefore, to address these challenges, this study developed a novel data-driven approach for personalized lifestyle behaviors recommendation based on machine learning and a personalized exponential utility function model. The contributions of this work can be summarized into three aspects: (1) a classification-based prediction model is implemented to predict the CVD risk based on the condition of risk factors; (2) the generative adversarial network (GAN) is incorporated to learn the underlying relationship between risk factors, as well as quantify the uncertainty of disease progression under lifestyle modifications; and (3) a novel personalized exponential utility function model is proposed to evaluate the modifications' utilities with respect to CVD risk reduction, individual's effort-benefits consideration, and disease progression uncertainty, as well as identify the optimal modification for each individual. The effectiveness of the proposed method is validated through an open-access CVD dataset. The results demonstrate that the personalized lifestyle modification recommended by the proposed methodology has the potential to effectively reduce the CVD risk. Thus, it is promising to be further applied to real-world cases for CVD prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瘦瘦的背包完成签到,获得积分10
1秒前
1秒前
赘婿应助Elaine采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
科研小白完成签到,获得积分10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得50
2秒前
CodeCraft应助科研通管家采纳,获得30
2秒前
控制小弟应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
彭于晏应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
orixero应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
彭于晏完成签到,获得积分10
3秒前
勤劳元瑶完成签到,获得积分10
3秒前
whatever举报muzi求助涉嫌违规
4秒前
小白发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
5秒前
搬砖工完成签到,获得积分10
5秒前
Lucas应助圈圈采纳,获得10
6秒前
NexusExplorer应助韭菜盒子采纳,获得10
6秒前
6秒前
Harlotte发布了新的文献求助10
6秒前
就是我完成签到,获得积分10
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740