已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A utility-based machine learning-driven personalized lifestyle recommendation for cardiovascular disease prevention

疾病 计算机科学 机器学习 个性化医疗 功能(生物学) 人工智能 风险分析(工程) 生成语法 医学 生物信息学 进化生物学 生物 病理
作者
Ayşe Kutluhan Doğan,Yuxuan Li,Chiwetalu Peter Odo,Kalyani Sonawane,Ying Lin,Chenang Liu
出处
期刊:Journal of Biomedical Informatics [Elsevier BV]
卷期号:141: 104342-104342 被引量:6
标识
DOI:10.1016/j.jbi.2023.104342
摘要

In recent decades, cardiovascular disease (CVD) has become the leading cause of death in most countries of the world. Since many types of CVD are preventable by modifying lifestyle behaviors, the objective of this paper is to develop an effective personalized lifestyle recommendation algorithm for reducing the risk of common types of CVD. However, in practice, the underlying relationships between the risk factors (e.g., lifestyles, blood pressure, etc.) and disease onset is highly complex. It is also challenging to identify effective modification recommendations for different individuals due to individual's effort-benefits consideration and uncertainties in disease progression. Therefore, to address these challenges, this study developed a novel data-driven approach for personalized lifestyle behaviors recommendation based on machine learning and a personalized exponential utility function model. The contributions of this work can be summarized into three aspects: (1) a classification-based prediction model is implemented to predict the CVD risk based on the condition of risk factors; (2) the generative adversarial network (GAN) is incorporated to learn the underlying relationship between risk factors, as well as quantify the uncertainty of disease progression under lifestyle modifications; and (3) a novel personalized exponential utility function model is proposed to evaluate the modifications' utilities with respect to CVD risk reduction, individual's effort-benefits consideration, and disease progression uncertainty, as well as identify the optimal modification for each individual. The effectiveness of the proposed method is validated through an open-access CVD dataset. The results demonstrate that the personalized lifestyle modification recommended by the proposed methodology has the potential to effectively reduce the CVD risk. Thus, it is promising to be further applied to real-world cases for CVD prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助decade采纳,获得10
2秒前
5秒前
ZZR完成签到,获得积分20
5秒前
务实白开水完成签到,获得积分10
7秒前
古人完成签到,获得积分10
11秒前
徐世深白发布了新的文献求助10
11秒前
injuly完成签到,获得积分10
12秒前
tjnksy完成签到,获得积分10
13秒前
在水一方应助科研通管家采纳,获得10
18秒前
李金文应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
orixero应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
李金文应助科研通管家采纳,获得10
18秒前
星辰大海应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
852应助科研通管家采纳,获得20
19秒前
风趣的冬日完成签到 ,获得积分10
22秒前
李健应助饶清萍采纳,获得10
22秒前
23秒前
徐世深白完成签到,获得积分20
30秒前
英姑应助coollz采纳,获得10
33秒前
35秒前
35秒前
英俊的铭应助努力的蜗牛采纳,获得10
36秒前
四月的海棠完成签到 ,获得积分10
39秒前
饶清萍发布了新的文献求助10
39秒前
41秒前
45秒前
coollz发布了新的文献求助10
46秒前
48秒前
香蕉觅云应助Megan采纳,获得10
50秒前
50秒前
chigga发布了新的文献求助10
54秒前
57秒前
敏感的飞松完成签到 ,获得积分10
59秒前
1分钟前
吃了一口还想吃完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4610489
求助须知:如何正确求助?哪些是违规求助? 4016443
关于积分的说明 12435173
捐赠科研通 3698029
什么是DOI,文献DOI怎么找? 2039187
邀请新用户注册赠送积分活动 1072053
科研通“疑难数据库(出版商)”最低求助积分说明 955729