A utility-based machine learning-driven personalized lifestyle recommendation for cardiovascular disease prevention

疾病 计算机科学 机器学习 个性化医疗 功能(生物学) 人工智能 风险分析(工程) 生成语法 医学 生物信息学 进化生物学 生物 病理
作者
Ayşe Kutluhan Doğan,Yuxuan Li,Chiwetalu Peter Odo,Kalyani Sonawane,Ying Lin,Chenang Liu
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:141: 104342-104342 被引量:6
标识
DOI:10.1016/j.jbi.2023.104342
摘要

In recent decades, cardiovascular disease (CVD) has become the leading cause of death in most countries of the world. Since many types of CVD are preventable by modifying lifestyle behaviors, the objective of this paper is to develop an effective personalized lifestyle recommendation algorithm for reducing the risk of common types of CVD. However, in practice, the underlying relationships between the risk factors (e.g., lifestyles, blood pressure, etc.) and disease onset is highly complex. It is also challenging to identify effective modification recommendations for different individuals due to individual's effort-benefits consideration and uncertainties in disease progression. Therefore, to address these challenges, this study developed a novel data-driven approach for personalized lifestyle behaviors recommendation based on machine learning and a personalized exponential utility function model. The contributions of this work can be summarized into three aspects: (1) a classification-based prediction model is implemented to predict the CVD risk based on the condition of risk factors; (2) the generative adversarial network (GAN) is incorporated to learn the underlying relationship between risk factors, as well as quantify the uncertainty of disease progression under lifestyle modifications; and (3) a novel personalized exponential utility function model is proposed to evaluate the modifications' utilities with respect to CVD risk reduction, individual's effort-benefits consideration, and disease progression uncertainty, as well as identify the optimal modification for each individual. The effectiveness of the proposed method is validated through an open-access CVD dataset. The results demonstrate that the personalized lifestyle modification recommended by the proposed methodology has the potential to effectively reduce the CVD risk. Thus, it is promising to be further applied to real-world cases for CVD prevention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fly发布了新的文献求助10
2秒前
激动的以寒完成签到 ,获得积分10
3秒前
浮游应助薰衣草采纳,获得10
3秒前
3秒前
6秒前
科目三应助时尚的靖采纳,获得10
6秒前
7秒前
绵杨完成签到,获得积分10
7秒前
年少完成签到,获得积分10
8秒前
55155255完成签到,获得积分10
8秒前
9秒前
9秒前
huanir99完成签到 ,获得积分10
9秒前
兴奋的听筠完成签到,获得积分10
9秒前
脑洞疼应助berg采纳,获得10
10秒前
Pu_tao发布了新的文献求助10
11秒前
Fly完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
梨儿萌死发布了新的文献求助20
14秒前
14秒前
orange发布了新的文献求助10
15秒前
NMZN完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
大方的蓝完成签到 ,获得积分10
17秒前
18秒前
十年完成签到 ,获得积分10
18秒前
19秒前
无唉发布了新的文献求助10
19秒前
Pu_tao完成签到,获得积分10
19秒前
TK发布了新的文献求助10
19秒前
lucinda发布了新的文献求助10
20秒前
小高子发布了新的文献求助10
20秒前
柒七完成签到,获得积分10
21秒前
犹豫学姐完成签到,获得积分10
21秒前
moyu123发布了新的文献求助10
22秒前
瓦罐完成签到 ,获得积分10
22秒前
霍则风发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594252
求助须知:如何正确求助?哪些是违规求助? 4679915
关于积分的说明 14812161
捐赠科研通 4646417
什么是DOI,文献DOI怎么找? 2534795
邀请新用户注册赠送积分活动 1502804
关于科研通互助平台的介绍 1469490