A utility-based machine learning-driven personalized lifestyle recommendation for cardiovascular disease prevention

疾病 计算机科学 机器学习 个性化医疗 功能(生物学) 人工智能 风险分析(工程) 生成语法 医学 生物信息学 进化生物学 生物 病理
作者
Ayşe Kutluhan Doğan,Yuxuan Li,Chiwetalu Peter Odo,Kalyani Sonawane,Ying Lin,Chenang Liu
出处
期刊:Journal of Biomedical Informatics [Elsevier]
卷期号:141: 104342-104342 被引量:6
标识
DOI:10.1016/j.jbi.2023.104342
摘要

In recent decades, cardiovascular disease (CVD) has become the leading cause of death in most countries of the world. Since many types of CVD are preventable by modifying lifestyle behaviors, the objective of this paper is to develop an effective personalized lifestyle recommendation algorithm for reducing the risk of common types of CVD. However, in practice, the underlying relationships between the risk factors (e.g., lifestyles, blood pressure, etc.) and disease onset is highly complex. It is also challenging to identify effective modification recommendations for different individuals due to individual's effort-benefits consideration and uncertainties in disease progression. Therefore, to address these challenges, this study developed a novel data-driven approach for personalized lifestyle behaviors recommendation based on machine learning and a personalized exponential utility function model. The contributions of this work can be summarized into three aspects: (1) a classification-based prediction model is implemented to predict the CVD risk based on the condition of risk factors; (2) the generative adversarial network (GAN) is incorporated to learn the underlying relationship between risk factors, as well as quantify the uncertainty of disease progression under lifestyle modifications; and (3) a novel personalized exponential utility function model is proposed to evaluate the modifications' utilities with respect to CVD risk reduction, individual's effort-benefits consideration, and disease progression uncertainty, as well as identify the optimal modification for each individual. The effectiveness of the proposed method is validated through an open-access CVD dataset. The results demonstrate that the personalized lifestyle modification recommended by the proposed methodology has the potential to effectively reduce the CVD risk. Thus, it is promising to be further applied to real-world cases for CVD prevention.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xyj完成签到,获得积分10
1秒前
威武荔枝发布了新的文献求助10
1秒前
农夫果园完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
不着四六的岁月完成签到,获得积分10
2秒前
260929667完成签到,获得积分10
2秒前
2秒前
喔喔糖完成签到 ,获得积分10
3秒前
稳重诗珊完成签到,获得积分10
3秒前
欧斌完成签到,获得积分10
3秒前
豆豆豆莎包完成签到,获得积分10
3秒前
维维逗奶完成签到 ,获得积分10
4秒前
芍药完成签到,获得积分10
4秒前
英俊的铭应助易北采纳,获得30
4秒前
汪汪完成签到,获得积分10
5秒前
科研小陈完成签到,获得积分10
5秒前
心灵美的石头完成签到,获得积分10
6秒前
6秒前
跳跃的语柔完成签到 ,获得积分10
6秒前
命运线完成签到,获得积分10
6秒前
仁爱白亦完成签到 ,获得积分10
6秒前
静子发布了新的文献求助10
7秒前
8秒前
芍药发布了新的文献求助10
8秒前
不知道完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
Liangstar完成签到 ,获得积分10
9秒前
9秒前
光子完成签到 ,获得积分10
9秒前
大胆人英完成签到,获得积分10
9秒前
光亮的青文完成签到 ,获得积分10
9秒前
Aether完成签到,获得积分10
9秒前
10秒前
如梦发布了新的文献求助10
10秒前
Ch_7完成签到,获得积分10
10秒前
11秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584999
求助须知:如何正确求助?哪些是违规求助? 4668850
关于积分的说明 14772776
捐赠科研通 4616602
什么是DOI,文献DOI怎么找? 2530306
邀请新用户注册赠送积分活动 1499116
关于科研通互助平台的介绍 1467641