Practical Feature Inference Attack in Vertical Federated Learning During Prediction in Artificial Internet of Things

计算机科学 推论 对手 人工智能 特征(语言学) 黑匣子 模型攻击 服务器 机器学习 GSM演进的增强数据速率 数据挖掘 计算机安全 计算机网络 语言学 哲学
作者
Ruikang Yang,Jianfeng Ma,Junying Zhang,Saru Kumari,Sachin Kumar,Joel J. P. C. Rodrigues
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 5-16
标识
DOI:10.1109/jiot.2023.3275161
摘要

The emergence of edge computing guarantees the combination of the Internet of Things (IoT) and artificial intelligence (AI). The vertical federated learning (VFL) framework, usually deployed by split learning, can analyze and integrate information on different features collected by different terminals in the IoT. The complete model is divided into a top model and multiple bottom models in a specific middle layer. Each passive party as a terminal with certain features owns a bottom model, and an active party as an edge server with labels holds the top model. Feature inference attack aims to infer the party’s features from the model predictions during prediction in VFL. Existing attacks considered the adversary an active party under the white-box or black-box model. However, an attacker usually is a passive party in practice because terminals are more vulnerable than edge servers. Therefore, this article discusses a practical feature inference attack in VFL during prediction in IoT under this setting. We design an adversary builds an inference model to minimize the distance between the predictions from the inferred features and target features. Because the information on the top model and other bottom models is unknown, the adversary cannot directly train the inference model. Therefore, we utilize the zeroth-order gradient estimation method to calculate the parameters’ gradients to train the inference model. Experimental results demonstrate that the performance of our attack is comparable to that of the white-box attacks while retaining apparent advantages over the existing black-box attacks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵某人完成签到,获得积分10
刚刚
1秒前
3秒前
3秒前
yowgo完成签到,获得积分10
3秒前
嗯_好完成签到,获得积分10
4秒前
领导范儿应助1177采纳,获得10
4秒前
5秒前
怡然雨雪发布了新的文献求助10
6秒前
6秒前
7秒前
知性的灵波完成签到,获得积分10
7秒前
Lucas应助体贴汽车采纳,获得10
8秒前
8秒前
炙热问薇发布了新的文献求助10
8秒前
8秒前
语秋完成签到,获得积分10
9秒前
shinn发布了新的文献求助10
12秒前
12秒前
小李先绅发布了新的文献求助10
14秒前
吃的饱饱呀完成签到 ,获得积分10
15秒前
honey完成签到,获得积分10
16秒前
啊啊的发布了新的文献求助10
19秒前
淡定的幻枫完成签到 ,获得积分10
19秒前
文艺的傲晴完成签到,获得积分10
20秒前
h4ra1n完成签到,获得积分10
20秒前
壹零零柒完成签到 ,获得积分10
21秒前
22秒前
Lucas应助啊啊的采纳,获得10
22秒前
23秒前
Yue完成签到 ,获得积分10
24秒前
25秒前
无花果应助开心的勇敢采纳,获得10
25秒前
大模型应助暖暖采纳,获得10
26秒前
大个应助花老美采纳,获得10
26秒前
wanci应助小李先绅采纳,获得10
26秒前
29秒前
30秒前
复成完成签到 ,获得积分10
30秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967175
求助须知:如何正确求助?哪些是违规求助? 3512515
关于积分的说明 11163672
捐赠科研通 3247423
什么是DOI,文献DOI怎么找? 1793810
邀请新用户注册赠送积分活动 874616
科研通“疑难数据库(出版商)”最低求助积分说明 804488