Defect engineering in ZnIn2X4 (X=S, Se, Te) semiconductors for improved photocatalysis

材料科学 光催化 密度泛函理论 带隙 半导体 载流子 硫系化合物 吸收边 空位缺陷 化学物理 接受者 费米能级 吸收(声学) 兴奋剂 光催化分解水 分解水 电子结构 可见光谱 光电子学 电子 凝聚态物理 计算化学 结晶学 化学 生物化学 复合材料 催化作用 物理 量子力学
作者
Md. Habibur Rahman,Jiaqi Yang,Yujie Sun,Arun Mannodi‐Kanakkithodi
出处
期刊:Surfaces and Interfaces [Elsevier BV]
卷期号:39: 102960-102960 被引量:13
标识
DOI:10.1016/j.surfin.2023.102960
摘要

ZnIn2S4 has emerged as a material of interest for semiconductor-based chalcogenide photocatalysts due to its visible light absorption, chemical and thermal stability, and low cost. However, the photocatalytic activity of ZnIn2S4 is affected by the limited range of visible light absorption and ultrafast recombination of solar light-induced holes and electrons. While previous studies have considered the consequences of metal doping, metal deposition, and vacancy engineering on the photocatalytic activity of ZnIn2S4, a comprehensive understanding of native point defects and how they affect electronic and photocatalytic properties remains elusive. Here, we present a density functional theory (DFT) investigation of defect energetics in ZnIn2X4 (X=S, Se, Te) compounds in both bulk and ultrathin phases. Using both semi-local and hybrid DFT functionals, properties of interest such as the electronic band gap and band edges, optical absorption spectra, and carrier mobilities are first computed for defect-free structures. Although ultrathin ZnIn2S4 shows lower absorption compared to other chalcogenides, it exhibits sufficient overpotential for oxidation and reduction reactions for photocatalytic water splitting. Formation energies of all possible vacancies, self-interstitials, and anti-site substitutional defects are then computed for all structures, as a function of chemical growth conditions, charge state, and Fermi level (EF), which leads to the identification of the lowest energy acceptor and donor type defects and their corresponding shallow or deep level nature. DFT results show that these metal sulfide photocatalysts are prone to ZnIn and InZn anti-site substitutions, which pin the equilibrium EF close to the conduction band edge, indicative of n-type conductivity. While ZnIn does not create deep defect levels in ZnIn2X4, most of the stable native defects do create deep levels, which could adversely affect solar absorption. Finally, we report the influence of defects on the photocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) on ultrathin ZnIn2X4. Our results suggest that a metal interstitial defect could substantially boost HER and OER on the surface of ultrathin ZnIn2X4. Overall, this systematic first principles investigation can help drive the experimental design and defect engineering of ZnIn2X4 compounds for a variety of photocatalytic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
junzheng完成签到,获得积分10
2秒前
shmily完成签到,获得积分10
2秒前
跳跳妈妈发布了新的文献求助10
2秒前
小蘑菇应助高序采纳,获得10
2秒前
00完成签到 ,获得积分10
3秒前
赘婿应助复杂的扬采纳,获得10
3秒前
神勇傲儿完成签到,获得积分20
3秒前
4秒前
4秒前
刘齐发布了新的文献求助10
5秒前
5秒前
7秒前
8秒前
8秒前
shmily发布了新的文献求助10
9秒前
听说发布了新的文献求助10
9秒前
昵称儿完成签到 ,获得积分10
9秒前
wjx发布了新的文献求助10
10秒前
10秒前
lyp7028完成签到,获得积分10
10秒前
asda发布了新的文献求助10
11秒前
加电时间完成签到,获得积分10
11秒前
Ha7发布了新的文献求助10
11秒前
星辰大海应助Two-Capitals采纳,获得10
12秒前
12秒前
爆米花应助大饼卷肉采纳,获得10
13秒前
CipherSage应助校长采纳,获得10
13秒前
苏灿应助kassidy采纳,获得10
13秒前
secost发布了新的文献求助10
13秒前
宋怡慷完成签到,获得积分10
14秒前
14秒前
1111完成签到,获得积分10
14秒前
顾矜应助123456采纳,获得10
15秒前
ziying126发布了新的文献求助10
15秒前
思源应助asda采纳,获得10
16秒前
16秒前
香蕉觅云应助无望幽月采纳,获得10
16秒前
17秒前
科目三应助Harry采纳,获得30
17秒前
哇哈哈哈哈哈完成签到,获得积分10
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974856
求助须知:如何正确求助?哪些是违规求助? 3519400
关于积分的说明 11198085
捐赠科研通 3255563
什么是DOI,文献DOI怎么找? 1797860
邀请新用户注册赠送积分活动 877208
科研通“疑难数据库(出版商)”最低求助积分说明 806219