Classification of normal and abnormal fetal heart ultrasound images and identification of ventricular septal defects based on deep learning

医学 超声波 试验装置 胎心 卷积神经网络 产前诊断 胎儿超声心动图 妇产科学 人工智能 鉴定(生物学) 产前超声 集合(抽象数据类型) 放射科 胎儿 心脏病学 怀孕 计算机科学 遗传学 程序设计语言 植物 生物
作者
Yiru Yang,Bingzheng Wu,Huiling Wu,Xu Wu,Guorong Lyu,Peizhong Liu,Shaozheng He
出处
期刊:Journal of Perinatal Medicine [De Gruyter]
卷期号:51 (8): 1052-1058 被引量:10
标识
DOI:10.1515/jpm-2023-0041
摘要

Congenital heart defects (CHDs) are the most common birth defects. Recently, artificial intelligence (AI) was used to assist in CHD diagnosis. No comparison has been made among the various types of algorithms that can assist in the prenatal diagnosis.Normal and abnormal fetal ultrasound heart images, including five standard views, were collected according to the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) Practice guidelines. You Only Look Once version 5 (YOLOv5) models were trained and tested. An excellent model was screened out after comparing YOLOv5 with other classic detection methods.On the training set, YOLOv5n performed slightly better than the others. On the validation set, YOLOv5n attained the highest overall accuracy (90.67 %). On the CHD test set, YOLOv5n, which only needed 0.007 s to recognize each image, had the highest overall accuracy (82.93 %), and YOLOv5l achieved the best accuracy on the abnormal dataset (71.93 %). On the VSD test set, YOLOv5l had the best performance, with a 92.79 % overall accuracy rate and 92.59 % accuracy on the abnormal dataset. The YOLOv5 models achieved better performance than the Fast region-based convolutional neural network (RCNN) & ResNet50 model and the Fast RCNN & MobileNetv2 model on the CHD test set (p<0.05) and VSD test set (p<0.01).YOLOv5 models are able to accurately distinguish normal and abnormal fetal heart ultrasound images, especially with respect to the identification of VSD, which have the potential to assist ultrasound in prenatal diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
学分完成签到,获得积分10
2秒前
超帅连虎发布了新的文献求助10
7秒前
7秒前
LLL发布了新的文献求助10
7秒前
dery完成签到,获得积分10
8秒前
科目三应助zm采纳,获得10
8秒前
糖糖科研顺利呀完成签到 ,获得积分10
9秒前
夏来应助学分采纳,获得10
9秒前
10秒前
大胆的颜演完成签到,获得积分10
11秒前
11秒前
C_Cppp完成签到,获得积分10
11秒前
快乐的睫毛完成签到 ,获得积分10
13秒前
Ava应助Sky采纳,获得30
14秒前
ddli发布了新的文献求助10
15秒前
绝不拖延完成签到,获得积分10
15秒前
善学以致用应助C_Cppp采纳,获得10
16秒前
aslink完成签到,获得积分10
16秒前
冷冷暴力发布了新的文献求助50
17秒前
小乘号子完成签到,获得积分10
17秒前
17秒前
18秒前
文静尔风发布了新的文献求助30
18秒前
cherlie应助wenbo采纳,获得10
18秒前
bjyx完成签到,获得积分10
20秒前
Jasper应助陶醉的天菱采纳,获得10
20秒前
Annie发布了新的文献求助10
21秒前
23秒前
bjyx发布了新的文献求助10
23秒前
废废废完成签到 ,获得积分10
23秒前
25秒前
26秒前
xzy998应助zhourongchun采纳,获得10
26秒前
ding应助Summeryz920采纳,获得10
27秒前
范小楠发布了新的文献求助10
29秒前
传奇3应助务实的酸奶采纳,获得10
31秒前
32秒前
35秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994202
求助须知:如何正确求助?哪些是违规求助? 3534683
关于积分的说明 11266214
捐赠科研通 3274605
什么是DOI,文献DOI怎么找? 1806394
邀请新用户注册赠送积分活动 883273
科研通“疑难数据库(出版商)”最低求助积分说明 809724