Classification of normal and abnormal fetal heart ultrasound images and identification of ventricular septal defects based on deep learning

医学 超声波 试验装置 胎心 卷积神经网络 产前诊断 胎儿超声心动图 妇产科学 人工智能 鉴定(生物学) 产前超声 集合(抽象数据类型) 放射科 胎儿 心脏病学 怀孕 计算机科学 遗传学 程序设计语言 植物 生物
作者
Yiru Yang,Bingzheng Wu,Huiling Wu,Xu Wu,Guorong Lyu,Peizhong Liu,Shaozheng He
出处
期刊:Journal of Perinatal Medicine [De Gruyter]
卷期号:51 (8): 1052-1058 被引量:20
标识
DOI:10.1515/jpm-2023-0041
摘要

Abstract Objectives Congenital heart defects (CHDs) are the most common birth defects. Recently, artificial intelligence (AI) was used to assist in CHD diagnosis. No comparison has been made among the various types of algorithms that can assist in the prenatal diagnosis. Methods Normal and abnormal fetal ultrasound heart images, including five standard views, were collected according to the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) Practice guidelines. You Only Look Once version 5 (YOLOv5) models were trained and tested. An excellent model was screened out after comparing YOLOv5 with other classic detection methods. Results On the training set, YOLOv5n performed slightly better than the others. On the validation set, YOLOv5n attained the highest overall accuracy (90.67 %). On the CHD test set, YOLOv5n, which only needed 0.007 s to recognize each image, had the highest overall accuracy (82.93 %), and YOLOv5l achieved the best accuracy on the abnormal dataset (71.93 %). On the VSD test set, YOLOv5l had the best performance, with a 92.79 % overall accuracy rate and 92.59 % accuracy on the abnormal dataset. The YOLOv5 models achieved better performance than the Fast region-based convolutional neural network (RCNN) & ResNet50 model and the Fast RCNN & MobileNetv2 model on the CHD test set (p<0.05) and VSD test set (p<0.01). Conclusions YOLOv5 models are able to accurately distinguish normal and abnormal fetal heart ultrasound images, especially with respect to the identification of VSD, which have the potential to assist ultrasound in prenatal diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助英吉利25采纳,获得10
刚刚
杨lei发布了新的文献求助10
刚刚
23发布了新的文献求助10
刚刚
jlw完成签到,获得积分10
刚刚
yier发布了新的文献求助10
刚刚
科研通AI2S应助9579采纳,获得10
1秒前
充电宝应助Dre4m_Z采纳,获得10
1秒前
charint应助花开四海采纳,获得20
2秒前
顾矜应助STP顶峰相见采纳,获得10
2秒前
CQUT发布了新的文献求助10
3秒前
cy完成签到,获得积分10
3秒前
3秒前
3秒前
蜡笔小新发布了新的文献求助10
3秒前
白色的风车完成签到,获得积分10
3秒前
4秒前
4秒前
三金同学发布了新的文献求助10
5秒前
5秒前
万能图书馆应助杨lei采纳,获得10
5秒前
6秒前
猪猪hero发布了新的文献求助10
6秒前
6秒前
6秒前
可爱的函函应助竹萧采纳,获得10
6秒前
英吉利25发布了新的文献求助10
8秒前
小科完成签到,获得积分10
8秒前
敬老院N号发布了新的文献求助10
8秒前
上官若男应助Toma采纳,获得10
8秒前
8秒前
cy发布了新的文献求助30
8秒前
PAUL完成签到,获得积分10
8秒前
玉鱼儿发布了新的文献求助10
9秒前
彪壮的吐司完成签到,获得积分10
9秒前
科研通AI2S应助123采纳,获得80
9秒前
9秒前
9秒前
9秒前
10秒前
zz发布了新的文献求助30
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Rare earth elements and their applications 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5768619
求助须知:如何正确求助?哪些是违规求助? 5576280
关于积分的说明 15419148
捐赠科研通 4902454
什么是DOI,文献DOI怎么找? 2637767
邀请新用户注册赠送积分活动 1585694
关于科研通互助平台的介绍 1540805