Classification of normal and abnormal fetal heart ultrasound images and identification of ventricular septal defects based on deep learning

医学 超声波 试验装置 胎心 卷积神经网络 产前诊断 胎儿超声心动图 妇产科学 人工智能 鉴定(生物学) 产前超声 集合(抽象数据类型) 放射科 胎儿 心脏病学 怀孕 计算机科学 生物 程序设计语言 植物 遗传学
作者
Yun-Liang Yang,Bingzheng Wu,Huiling Wu,Xu Wu,Shangqing Li,Peizhong Liu,Shaozheng He
出处
期刊:Journal of Perinatal Medicine [De Gruyter]
卷期号:51 (8): 1052-1058 被引量:2
标识
DOI:10.1515/jpm-2023-0041
摘要

Congenital heart defects (CHDs) are the most common birth defects. Recently, artificial intelligence (AI) was used to assist in CHD diagnosis. No comparison has been made among the various types of algorithms that can assist in the prenatal diagnosis.Normal and abnormal fetal ultrasound heart images, including five standard views, were collected according to the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) Practice guidelines. You Only Look Once version 5 (YOLOv5) models were trained and tested. An excellent model was screened out after comparing YOLOv5 with other classic detection methods.On the training set, YOLOv5n performed slightly better than the others. On the validation set, YOLOv5n attained the highest overall accuracy (90.67 %). On the CHD test set, YOLOv5n, which only needed 0.007 s to recognize each image, had the highest overall accuracy (82.93 %), and YOLOv5l achieved the best accuracy on the abnormal dataset (71.93 %). On the VSD test set, YOLOv5l had the best performance, with a 92.79 % overall accuracy rate and 92.59 % accuracy on the abnormal dataset. The YOLOv5 models achieved better performance than the Fast region-based convolutional neural network (RCNN) & ResNet50 model and the Fast RCNN & MobileNetv2 model on the CHD test set (p<0.05) and VSD test set (p<0.01).YOLOv5 models are able to accurately distinguish normal and abnormal fetal heart ultrasound images, especially with respect to the identification of VSD, which have the potential to assist ultrasound in prenatal diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
汉堡包应助dspan采纳,获得10
2秒前
3秒前
5秒前
krislang完成签到,获得积分10
6秒前
aiyowei发布了新的文献求助10
6秒前
7秒前
学习猴发布了新的文献求助10
7秒前
8秒前
无聊的不愁完成签到 ,获得积分10
9秒前
火火完成签到,获得积分10
9秒前
完美世界应助lxz采纳,获得10
10秒前
11秒前
Caleb完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
小花生zz发布了新的文献求助30
14秒前
快乐滑板应助王chun采纳,获得10
14秒前
冻冻妖完成签到,获得积分10
15秒前
15秒前
刘彤完成签到,获得积分10
16秒前
惠惠完成签到 ,获得积分10
17秒前
17秒前
18秒前
和谐初南发布了新的文献求助10
18秒前
18秒前
19秒前
鱼啊鱼完成签到,获得积分10
20秒前
20秒前
梦梦发布了新的文献求助30
20秒前
充电宝应助aiyowei采纳,获得10
21秒前
22秒前
22秒前
lxz发布了新的文献求助10
23秒前
依古比古发布了新的文献求助10
23秒前
张莎完成签到,获得积分20
24秒前
24秒前
马波萝溪完成签到,获得积分10
25秒前
loop发布了新的文献求助10
25秒前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344940
求助须知:如何正确求助?哪些是违规求助? 2971806
关于积分的说明 8651066
捐赠科研通 2652057
什么是DOI,文献DOI怎么找? 1452336
科研通“疑难数据库(出版商)”最低求助积分说明 672497
邀请新用户注册赠送积分活动 662047