亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Classification of normal and abnormal fetal heart ultrasound images and identification of ventricular septal defects based on deep learning

医学 超声波 试验装置 胎心 卷积神经网络 产前诊断 胎儿超声心动图 妇产科学 人工智能 鉴定(生物学) 产前超声 集合(抽象数据类型) 放射科 胎儿 心脏病学 怀孕 计算机科学 生物 程序设计语言 植物 遗传学
作者
Yiru Yang,Bingzheng Wu,Huiling Wu,Xu Wu,Guorong Lyu,Peizhong Liu,Shaozheng He
出处
期刊:Journal of Perinatal Medicine [De Gruyter]
卷期号:51 (8): 1052-1058 被引量:14
标识
DOI:10.1515/jpm-2023-0041
摘要

Congenital heart defects (CHDs) are the most common birth defects. Recently, artificial intelligence (AI) was used to assist in CHD diagnosis. No comparison has been made among the various types of algorithms that can assist in the prenatal diagnosis.Normal and abnormal fetal ultrasound heart images, including five standard views, were collected according to the International Society of Ultrasound in Obstetrics and Gynecology (ISUOG) Practice guidelines. You Only Look Once version 5 (YOLOv5) models were trained and tested. An excellent model was screened out after comparing YOLOv5 with other classic detection methods.On the training set, YOLOv5n performed slightly better than the others. On the validation set, YOLOv5n attained the highest overall accuracy (90.67 %). On the CHD test set, YOLOv5n, which only needed 0.007 s to recognize each image, had the highest overall accuracy (82.93 %), and YOLOv5l achieved the best accuracy on the abnormal dataset (71.93 %). On the VSD test set, YOLOv5l had the best performance, with a 92.79 % overall accuracy rate and 92.59 % accuracy on the abnormal dataset. The YOLOv5 models achieved better performance than the Fast region-based convolutional neural network (RCNN) & ResNet50 model and the Fast RCNN & MobileNetv2 model on the CHD test set (p<0.05) and VSD test set (p<0.01).YOLOv5 models are able to accurately distinguish normal and abnormal fetal heart ultrasound images, especially with respect to the identification of VSD, which have the potential to assist ultrasound in prenatal diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助馨雨清滢采纳,获得30
刚刚
那咋了发布了新的文献求助10
2秒前
2秒前
hxx发布了新的文献求助10
6秒前
9秒前
10秒前
IfItheonlyone完成签到 ,获得积分10
12秒前
相俊杰发布了新的文献求助50
13秒前
完美世界应助那咋了采纳,获得10
15秒前
桉豆完成签到 ,获得积分10
17秒前
17秒前
努力加油煤老八完成签到 ,获得积分0
18秒前
19秒前
Taro发布了新的文献求助10
22秒前
慌慌完成签到 ,获得积分10
22秒前
慕青应助冷酷的依霜采纳,获得10
26秒前
newplayer发布了新的文献求助20
32秒前
那咋了完成签到,获得积分10
34秒前
重重发布了新的文献求助10
35秒前
roe完成签到 ,获得积分10
35秒前
36秒前
共享精神应助尊敬凝丹采纳,获得30
38秒前
微笑的天抒完成签到,获得积分10
38秒前
43秒前
44秒前
仔仔完成签到 ,获得积分10
47秒前
wang发布了新的文献求助10
48秒前
阿楠发布了新的文献求助10
50秒前
JL完成签到,获得积分10
52秒前
52秒前
英俊的铭应助盐焗小崔采纳,获得10
56秒前
zxcvbnm完成签到,获得积分10
59秒前
慕青应助李小猫采纳,获得10
1分钟前
Fushanyu完成签到 ,获得积分10
1分钟前
李小猫完成签到,获得积分10
1分钟前
1分钟前
CipherSage应助ceeray23采纳,获得20
1分钟前
jh完成签到 ,获得积分10
1分钟前
Lin完成签到 ,获得积分10
1分钟前
薛雨佳完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463119
求助须知:如何正确求助?哪些是违规求助? 4567919
关于积分的说明 14311980
捐赠科研通 4493749
什么是DOI,文献DOI怎么找? 2461864
邀请新用户注册赠送积分活动 1450876
关于科研通互助平台的介绍 1426051