An MRI-Based Radiomics Nomogram to Distinguish Ductal Carcinoma In Situ with Microinvasion From Ductal Carcinoma In Situ of Breast Cancer

列线图 导管癌 医学 无线电技术 乳腺癌 放射科 磁共振成像 逻辑回归 置信区间 肿瘤科 癌症 内科学
作者
Zengjie Wu,Qing Lin,Haibo Wang,Guanqun Wang,Guangming Fu,Tiantian Bian
出处
期刊:Academic Radiology [Elsevier]
卷期号:30: S71-S81 被引量:4
标识
DOI:10.1016/j.acra.2023.03.038
摘要

•Accurate preoperative differentiation between DCISM and DCIS can facilitate individualized treatment optimization. •A radiomics nomogram based on preoperative MR images demonstrated the best discrimination efficacy between DCISM and DCIS. •BPE was an independent clinical risk factor for differentiating DCISM from DCIS. Rationale and Objectives Accurate preoperative differentiation between ductal carcinoma in situ with microinvasion (DCISM) and ductal carcinoma in situ (DCIS) could facilitate treatment optimization and individualized risk assessment. The present study aims to build and validate a radiomics nomogram based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) that could distinguish DCISM from pure DCIS breast cancer. Materials and Methods MR images of 140 patients obtained between March 2019 and November 2022 at our institution were included. Patients were randomly divided into a training (n = 97) and a test set (n = 43). Patients in both sets were further split into DCIS and DCISM subgroups. The independent clinical risk factors were selected by multivariate logistic regression to establish the clinical model. The optimal radiomics features were chosen by the least absolute shrinkage and selection operator, and a radiomics signature was built. The nomogram model was constructed by integrating the radiomics signature and independent risk factors. The discrimination efficacy of our nomogram was assessed by using calibration and decision curves. Results Six features were selected to construct the radiomics signature for distinguishing DCISM from DCIS. The radiomics signature and nomogram model exhibited better calibration and validation performance in the training (AUC 0.815, 0.911, 95% confidence interval [CI], 0.703–0.926, 0.848–0.974) and test (AUC 0.830, 0.882, 95% CI, 0.672–0.989, 0.764–0.999) sets than in the clinical factor model (AUC 0.672, 0.717, 95% CI, 0.544–0.801, 0.527–0.907). The decision curve also demonstrated that the nomogram model exhibited good clinical utility. Conclusion The proposed noninvasive MRI-based radiomics nomogram model showed good performance in distinguishing DCISM from DCIS. Accurate preoperative differentiation between ductal carcinoma in situ with microinvasion (DCISM) and ductal carcinoma in situ (DCIS) could facilitate treatment optimization and individualized risk assessment. The present study aims to build and validate a radiomics nomogram based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) that could distinguish DCISM from pure DCIS breast cancer. MR images of 140 patients obtained between March 2019 and November 2022 at our institution were included. Patients were randomly divided into a training (n = 97) and a test set (n = 43). Patients in both sets were further split into DCIS and DCISM subgroups. The independent clinical risk factors were selected by multivariate logistic regression to establish the clinical model. The optimal radiomics features were chosen by the least absolute shrinkage and selection operator, and a radiomics signature was built. The nomogram model was constructed by integrating the radiomics signature and independent risk factors. The discrimination efficacy of our nomogram was assessed by using calibration and decision curves. Six features were selected to construct the radiomics signature for distinguishing DCISM from DCIS. The radiomics signature and nomogram model exhibited better calibration and validation performance in the training (AUC 0.815, 0.911, 95% confidence interval [CI], 0.703–0.926, 0.848–0.974) and test (AUC 0.830, 0.882, 95% CI, 0.672–0.989, 0.764–0.999) sets than in the clinical factor model (AUC 0.672, 0.717, 95% CI, 0.544–0.801, 0.527–0.907). The decision curve also demonstrated that the nomogram model exhibited good clinical utility. The proposed noninvasive MRI-based radiomics nomogram model showed good performance in distinguishing DCISM from DCIS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
坚强怀绿发布了新的文献求助10
4秒前
Hello应助林夏采纳,获得10
4秒前
LTW发布了新的文献求助10
5秒前
小闫闫完成签到,获得积分10
5秒前
丘比特应助研友_LOoomL采纳,获得10
6秒前
9秒前
如意雅山发布了新的文献求助10
10秒前
10秒前
大佑完成签到,获得积分10
11秒前
asd完成签到,获得积分10
11秒前
12秒前
12秒前
大佑发布了新的文献求助10
13秒前
GillianRan完成签到,获得积分10
15秒前
16秒前
林夏发布了新的文献求助10
17秒前
仇悦完成签到,获得积分10
18秒前
18秒前
充电宝应助无糖零脂采纳,获得10
19秒前
20秒前
21秒前
如意雅山完成签到,获得积分20
24秒前
hope完成签到,获得积分10
24秒前
dawnfrf应助聪慧的致远采纳,获得20
24秒前
艾利克斯发布了新的文献求助10
25秒前
25秒前
26秒前
大模型应助云中鹤采纳,获得10
27秒前
大个应助小席采纳,获得10
27秒前
28秒前
Dobby发布了新的文献求助10
28秒前
30秒前
31秒前
研友_LOoomL发布了新的文献求助10
33秒前
33秒前
哈哈发布了新的文献求助10
33秒前
风宝宝发布了新的文献求助10
35秒前
忧郁芝发布了新的文献求助10
37秒前
敷衍发布了新的文献求助10
38秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Data Structures and Algorithms in Java 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268281
求助须知:如何正确求助?哪些是违规求助? 2907854
关于积分的说明 8343465
捐赠科研通 2578165
什么是DOI,文献DOI怎么找? 1401736
科研通“疑难数据库(出版商)”最低求助积分说明 655174
邀请新用户注册赠送积分活动 634291