An MRI-Based Radiomics Nomogram to Distinguish Ductal Carcinoma In Situ with Microinvasion From Ductal Carcinoma In Situ of Breast Cancer

列线图 导管癌 医学 无线电技术 乳腺癌 放射科 磁共振成像 逻辑回归 置信区间 肿瘤科 癌症 内科学
作者
Zengjie Wu,Qing Lin,Haibo Wang,Guanqun Wang,Guangming Fu,Tiantian Bian
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30: S71-S81 被引量:4
标识
DOI:10.1016/j.acra.2023.03.038
摘要

•Accurate preoperative differentiation between DCISM and DCIS can facilitate individualized treatment optimization. •A radiomics nomogram based on preoperative MR images demonstrated the best discrimination efficacy between DCISM and DCIS. •BPE was an independent clinical risk factor for differentiating DCISM from DCIS. Rationale and Objectives Accurate preoperative differentiation between ductal carcinoma in situ with microinvasion (DCISM) and ductal carcinoma in situ (DCIS) could facilitate treatment optimization and individualized risk assessment. The present study aims to build and validate a radiomics nomogram based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) that could distinguish DCISM from pure DCIS breast cancer. Materials and Methods MR images of 140 patients obtained between March 2019 and November 2022 at our institution were included. Patients were randomly divided into a training (n = 97) and a test set (n = 43). Patients in both sets were further split into DCIS and DCISM subgroups. The independent clinical risk factors were selected by multivariate logistic regression to establish the clinical model. The optimal radiomics features were chosen by the least absolute shrinkage and selection operator, and a radiomics signature was built. The nomogram model was constructed by integrating the radiomics signature and independent risk factors. The discrimination efficacy of our nomogram was assessed by using calibration and decision curves. Results Six features were selected to construct the radiomics signature for distinguishing DCISM from DCIS. The radiomics signature and nomogram model exhibited better calibration and validation performance in the training (AUC 0.815, 0.911, 95% confidence interval [CI], 0.703–0.926, 0.848–0.974) and test (AUC 0.830, 0.882, 95% CI, 0.672–0.989, 0.764–0.999) sets than in the clinical factor model (AUC 0.672, 0.717, 95% CI, 0.544–0.801, 0.527–0.907). The decision curve also demonstrated that the nomogram model exhibited good clinical utility. Conclusion The proposed noninvasive MRI-based radiomics nomogram model showed good performance in distinguishing DCISM from DCIS. Accurate preoperative differentiation between ductal carcinoma in situ with microinvasion (DCISM) and ductal carcinoma in situ (DCIS) could facilitate treatment optimization and individualized risk assessment. The present study aims to build and validate a radiomics nomogram based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) that could distinguish DCISM from pure DCIS breast cancer. MR images of 140 patients obtained between March 2019 and November 2022 at our institution were included. Patients were randomly divided into a training (n = 97) and a test set (n = 43). Patients in both sets were further split into DCIS and DCISM subgroups. The independent clinical risk factors were selected by multivariate logistic regression to establish the clinical model. The optimal radiomics features were chosen by the least absolute shrinkage and selection operator, and a radiomics signature was built. The nomogram model was constructed by integrating the radiomics signature and independent risk factors. The discrimination efficacy of our nomogram was assessed by using calibration and decision curves. Six features were selected to construct the radiomics signature for distinguishing DCISM from DCIS. The radiomics signature and nomogram model exhibited better calibration and validation performance in the training (AUC 0.815, 0.911, 95% confidence interval [CI], 0.703–0.926, 0.848–0.974) and test (AUC 0.830, 0.882, 95% CI, 0.672–0.989, 0.764–0.999) sets than in the clinical factor model (AUC 0.672, 0.717, 95% CI, 0.544–0.801, 0.527–0.907). The decision curve also demonstrated that the nomogram model exhibited good clinical utility. The proposed noninvasive MRI-based radiomics nomogram model showed good performance in distinguishing DCISM from DCIS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小洪俊熙完成签到,获得积分10
1秒前
小杨发布了新的文献求助10
2秒前
JUAN完成签到,获得积分10
3秒前
不信人间有白头完成签到 ,获得积分10
3秒前
明亮的代灵完成签到 ,获得积分10
3秒前
嗯哼完成签到 ,获得积分10
6秒前
liaomr完成签到 ,获得积分10
9秒前
哈哈完成签到 ,获得积分10
10秒前
10秒前
八八九九九1完成签到,获得积分10
10秒前
ZHZ完成签到,获得积分10
11秒前
OeO完成签到 ,获得积分10
12秒前
Xiaoming完成签到,获得积分0
12秒前
哈哈哈发布了新的文献求助10
14秒前
lang完成签到,获得积分10
14秒前
16秒前
忐忑的天真完成签到 ,获得积分10
16秒前
舒适数据线完成签到,获得积分10
17秒前
优雅的千雁完成签到,获得积分10
18秒前
zz完成签到 ,获得积分10
18秒前
没用的三轮完成签到,获得积分10
18秒前
zw完成签到,获得积分10
19秒前
啊哈啊哈额完成签到,获得积分10
20秒前
土豆淀粉完成签到 ,获得积分10
21秒前
22秒前
青黛完成签到 ,获得积分10
25秒前
爱吃蒸蛋完成签到,获得积分10
26秒前
mayberichard完成签到,获得积分10
26秒前
27秒前
火星上莛完成签到 ,获得积分10
28秒前
fanzi完成签到 ,获得积分10
28秒前
28秒前
chinh完成签到,获得积分10
31秒前
unfeeling8完成签到 ,获得积分10
33秒前
JUNE发布了新的文献求助30
33秒前
34秒前
花花2024完成签到 ,获得积分10
36秒前
胖胖橘完成签到 ,获得积分10
37秒前
独指蜗牛完成签到 ,获得积分10
39秒前
40秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015640
求助须知:如何正确求助?哪些是违规求助? 3555625
关于积分的说明 11318138
捐赠科研通 3288796
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015