A hybrid safety monitoring framework for industrial FCC disengager coking rate based on FPM, CFD, and ML

计算流体力学 催化裂化 工艺工程 计算机科学 可扩展性 模拟 工程类 开裂 材料科学 数据库 航空航天工程 复合材料
作者
Mengxuan Zhang,Zhe Yang,Yunpeng Zhao,Mingzhu Lv,Xingying Lan,Xiaogang Shi,Jinsen Gao,Chuankun Li,Yuan Zhuang,Lin Yang
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:175: 17-33 被引量:13
标识
DOI:10.1016/j.psep.2023.05.004
摘要

This work proposed a hybrid modeling framework for the safety monitoring of coking rates in FCC (Fluidized Catalytic Cracking) disengager. The framework combines CFD (Computational Fluid Dynamics), coking FPM (First Principles Model), machine learning, and industrial data to establish a comprehensive and customizable approach. The FPM of the coking rate, including the UNIFAC condensation ratio model, the coking ratio model and the capture ratio model, are established by combustion experiments, gas-solid two-phase flow simulations and DPM (Discrete Phase Model) simulations. The capture ratio model is built to calculate the capture ratio of heavy oil droplets by each high-risk region, achieved by DPM simulation. By establishing a link between the simulated position and the DCS (Distributed Control System) sensor, the simulation results and the real-time DCS data are matching. An improved LSTM (Long Short-Term Memory) network was then established to predict the real-time temperature and pressure in the high-risk coking regions of the disengager using real-time DCS and LIMS (Laboratory Information Management System) data. The LSTM network can achieve online monitoring of coking rate by coupling FPM. This hybrid coking monitoring framework has been industrially applied and validated with an accuracy of over 90% in a continuous one-month online monitoring task, which is highly interpretable and extensible, providing refining companies with a scalable and customizable approach to monitor coking problems in FCC disengager.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HaoHao04完成签到 ,获得积分10
刚刚
Joshua发布了新的文献求助10
刚刚
乐观的莆完成签到,获得积分10
刚刚
1秒前
向日葵发布了新的文献求助10
1秒前
Orange应助白蕲采纳,获得10
1秒前
Neko完成签到,获得积分10
1秒前
Hello应助Chen采纳,获得10
1秒前
2秒前
研友_ZAVod8完成签到,获得积分10
2秒前
明月清风发布了新的文献求助10
2秒前
2秒前
柳絮发布了新的文献求助10
2秒前
2秒前
astr完成签到,获得积分10
2秒前
清爽老九发布了新的文献求助30
2秒前
爱学习发布了新的文献求助10
3秒前
orixero应助selfevidbet采纳,获得30
4秒前
温言完成签到,获得积分10
4秒前
思源应助Neko采纳,获得10
4秒前
Jasper应助通~采纳,获得10
5秒前
5秒前
wary完成签到,获得积分10
5秒前
5秒前
11发布了新的文献求助10
6秒前
7秒前
张小敏发布了新的文献求助10
7秒前
lt_zyk完成签到,获得积分10
8秒前
8秒前
wary发布了新的文献求助10
9秒前
清爽老九完成签到,获得积分10
9秒前
Orange应助张鱼小丸子采纳,获得10
9秒前
10秒前
11秒前
雨夜星空完成签到,获得积分10
11秒前
饱满的半青完成签到 ,获得积分10
12秒前
12秒前
务实盼海发布了新的文献求助10
12秒前
Jouleken完成签到,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762