亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-Driven Discovery of Graphene-Based Dual-Atom Catalysts for Hydrogen Evolution Reaction with Graph Neural Network and DFT Calculations

催化作用 石墨烯 材料科学 电化学 密度泛函理论 组合化学 纳米技术 计算化学 物理化学 化学 有机化学 电极
作者
Kajjana Boonpalit,Yutthana Wongnongwa,Chanatkran Prommin,Sarana Nutanong,supawadee namuangruk,Kajjana Boonpalit,Yutthana Wongnongwa,Chanatkran Prommin,Sarana Nutanong,supawadee namuangruk
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (10): 12936-12945 被引量:45
标识
DOI:10.1021/acsami.2c19391
摘要

The flexible tuning ability of dual-atom catalysts (DACs) makes them an ideal system for a wide range of electrochemical applications. However, the large design space of DACs and the complexity in the binding motif of electrochemical intermediates hinder the efficient determination of DAC combinations for desirable catalytic properties. A crystal graph convolutional neural network (CGCNN) was adopted for DACs to accelerate the high-throughput screening of hydrogen evolution reaction (HER) catalysts. From a pool of 435 dual-atom combinations in N-doped graphene (N6Gr), we screened out two high-performance HER catalysts (AuCo@N6Gr and NiNi@N6Gr) with excellent HER, electronic conductivity, and stability using the combination of CGCNN and density functional theory (DFT). Furthermore, comprehensive DFT studies were conducted on these two catalysts to confirm their outstanding reaction kinetics and to understand the cooperative effect between the metal pair for HER. To obtain ideal hydrogen binding in AuCo, the inert Au weakens the strong hydrogen binding of Co, while for NiNi, the two weakly binding Ni cooperate. The present protocol was able to select the two catalysts with different physical origins for HER and can be applied to other DAC catalysts, which should hasten catalyst discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助zslg采纳,获得10
7秒前
15秒前
21秒前
33秒前
34秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
37秒前
zslg发布了新的文献求助10
38秒前
44秒前
51秒前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
如意秋珊完成签到 ,获得积分10
2分钟前
2分钟前
畅快甜瓜发布了新的文献求助30
2分钟前
2分钟前
2分钟前
CodeCraft应助畅快甜瓜采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
搞怪柔完成签到,获得积分10
3分钟前
短巷完成签到 ,获得积分0
3分钟前
3分钟前
畅快甜瓜发布了新的文献求助10
3分钟前
3分钟前
华仔应助畅快甜瓜采纳,获得30
3分钟前
激动的似狮完成签到,获得积分0
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5732308
求助须知:如何正确求助?哪些是违规求助? 5338178
关于积分的说明 15322147
捐赠科研通 4877945
什么是DOI,文献DOI怎么找? 2620761
邀请新用户注册赠送积分活动 1569978
关于科研通互助平台的介绍 1526615