Data-Driven Discovery of Graphene-Based Dual-Atom Catalysts for Hydrogen Evolution Reaction with Graph Neural Network and DFT Calculations

催化作用 石墨烯 材料科学 电化学 密度泛函理论 组合化学 纳米技术 计算化学 物理化学 化学 有机化学 电极
作者
Kajjana Boonpalit,Yutthana Wongnongwa,Chanatkran Prommin,Sarana Nutanong,Supawadee Namuangruk‬
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:15 (10): 12936-12945 被引量:20
标识
DOI:10.1021/acsami.2c19391
摘要

The flexible tuning ability of dual-atom catalysts (DACs) makes them an ideal system for a wide range of electrochemical applications. However, the large design space of DACs and the complexity in the binding motif of electrochemical intermediates hinder the efficient determination of DAC combinations for desirable catalytic properties. A crystal graph convolutional neural network (CGCNN) was adopted for DACs to accelerate the high-throughput screening of hydrogen evolution reaction (HER) catalysts. From a pool of 435 dual-atom combinations in N-doped graphene (N6Gr), we screened out two high-performance HER catalysts (AuCo@N6Gr and NiNi@N6Gr) with excellent HER, electronic conductivity, and stability using the combination of CGCNN and density functional theory (DFT). Furthermore, comprehensive DFT studies were conducted on these two catalysts to confirm their outstanding reaction kinetics and to understand the cooperative effect between the metal pair for HER. To obtain ideal hydrogen binding in AuCo, the inert Au weakens the strong hydrogen binding of Co, while for NiNi, the two weakly binding Ni cooperate. The present protocol was able to select the two catalysts with different physical origins for HER and can be applied to other DAC catalysts, which should hasten catalyst discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
William鉴哲发布了新的文献求助10
刚刚
情怀应助只道寻常采纳,获得10
1秒前
1秒前
cyy完成签到,获得积分20
1秒前
orixero应助小庄采纳,获得10
2秒前
3秒前
侦察兵发布了新的文献求助10
3秒前
司徒元瑶完成签到 ,获得积分10
3秒前
梓榆发布了新的文献求助10
3秒前
3秒前
sweetbearm应助通~采纳,获得10
3秒前
斯文败类应助成就映秋采纳,获得10
4秒前
123456完成签到,获得积分10
4秒前
4秒前
moonlin完成签到 ,获得积分10
4秒前
5秒前
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
7秒前
wanci应助科研通管家采纳,获得10
7秒前
英俊的铭应助科研通管家采纳,获得10
7秒前
思源应助蟹黄堡不打折采纳,获得10
7秒前
Lily应助科研通管家采纳,获得40
7秒前
敬老院N号应助科研通管家采纳,获得30
7秒前
zzzq应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
慕青应助科研通管家采纳,获得10
7秒前
皮皮完成签到 ,获得积分10
7秒前
sallltyyy发布了新的文献求助10
7秒前
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
QPP完成签到,获得积分10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得30
7秒前
喜悦中道应助科研通管家采纳,获得10
7秒前
wzxxxx发布了新的文献求助10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794