3D pyramidal densely connected network with cross-frame uncertainty guidance for intravascular ultrasound sequence segmentation

血管内超声 分割 豪斯多夫距离 人工智能 计算机科学 雅卡索引 帧(网络) 计算机视觉 模式识别(心理学) 像素 稳健性(进化) 生物医学工程 医学 放射科 化学 基因 计算机网络 生物化学
作者
Menghua Xia,Hongbo Yang,Yi Huang,Yanan Qu,Guohui Zhou,Feng Zhang,Yuanyuan Wang,Mengyun Qiao
标识
DOI:10.1088/1361-6560/acb988
摘要

Abstract Objective . Automatic extraction of external elastic membrane border (EEM) and lumen-intima border (LIB) in intravascular ultrasound (IVUS) sequences aids atherosclerosis diagnosis. Existing IVUS segmentation networks ignored longitudinal relations among sequential images and neglected that IVUS images of different vascular conditions vary largely in intricacy and informativeness. As a result, they suffered from performance degradation in complicated parts in IVUS sequences. Approach . In this paper, we develop a 3D Pyramidal Densely-connected Network (PDN) with Adaptive learning and post-Correction guided by a novel cross-frame uncertainty (CFU). The proposed method is named PDN-AC. Specifically, the PDN enables the longitudinal information exploitation and the effective perception of size-varied vessel regions in IVUS samples, by pyramidally connecting multi-scale 3D dilated convolutions. Additionally, the CFU enhances the robustness of the method to complicated pathology from the frame-level (f-CFU) and pixel-level (p-CFU) via exploiting cross-frame knowledge in IVUS sequences. The f-CFU weighs the complexity of IVUS frames and steers an adaptive sampling during the PDN training. The p-CFU visualizes uncertain pixels probably misclassified by the PDN and guides an active contour-based post-correction. Main results . Human and animal experiments were conducted on IVUS datasets acquired from atherosclerosis patients and pigs. Results showed that the f-CFU weighted adaptive sampling reduced the Hausdorff distance (HD) by 10.53%/7.69% in EEM/LIB detection. Improvements achieved by the p-CFU guided post-correction were 2.94%/5.56%. Significance . The PDN-AC attained mean Jaccard values of 0.90/0.87 and HD values of 0.33/0.34 mm in EEM/LIB detection, preferable to state-of-the-art IVUS segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
Matrix完成签到,获得积分10
1秒前
RXL关闭了RXL文献求助
2秒前
小宋发布了新的文献求助10
3秒前
Lucas应助Gigi采纳,获得10
4秒前
5秒前
feifanyang完成签到,获得积分10
6秒前
彭于晏应助咸鱼爱喝汤采纳,获得10
10秒前
11秒前
小月亮完成签到,获得积分10
11秒前
田様应助美满的小熊猫采纳,获得10
12秒前
桐桐应助舒适的平蓝采纳,获得10
12秒前
CCC发布了新的文献求助10
12秒前
fzhou完成签到 ,获得积分10
14秒前
xiaofeiyan完成签到 ,获得积分10
15秒前
CodeCraft应助小鱼采纳,获得10
18秒前
22秒前
24秒前
24秒前
子车茗应助utf_8采纳,获得20
25秒前
ldx发布了新的文献求助10
25秒前
zho发布了新的文献求助10
26秒前
MOF发布了新的文献求助10
26秒前
追寻星月发布了新的文献求助10
28秒前
29秒前
阿航完成签到,获得积分10
30秒前
31秒前
33秒前
33秒前
大气的不乐完成签到 ,获得积分10
34秒前
冷酷的闹闹完成签到 ,获得积分10
34秒前
天天快乐应助Raven采纳,获得10
34秒前
35秒前
darui完成签到 ,获得积分10
36秒前
lynnleecc发布了新的文献求助10
37秒前
小橙子发布了新的文献求助10
39秒前
iiiau发布了新的文献求助10
42秒前
明帅完成签到,获得积分10
43秒前
550482956谢完成签到,获得积分10
43秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3343110
求助须知:如何正确求助?哪些是违规求助? 2970174
关于积分的说明 8642934
捐赠科研通 2650115
什么是DOI,文献DOI怎么找? 1451132
科研通“疑难数据库(出版商)”最低求助积分说明 672099
邀请新用户注册赠送积分活动 661407