3D pyramidal densely connected network with cross-frame uncertainty guidance for intravascular ultrasound sequence segmentation

血管内超声 分割 豪斯多夫距离 人工智能 计算机科学 雅卡索引 帧(网络) 计算机视觉 模式识别(心理学) 像素 稳健性(进化) 生物医学工程 医学 放射科 化学 基因 计算机网络 生物化学
作者
Menghua Xia,Hongbo Yang,Yi Huang,Yanan Qu,Guohui Zhou,Feng Zhang,Yuanyuan Wang,Mengyun Qiao
标识
DOI:10.1088/1361-6560/acb988
摘要

Abstract Objective . Automatic extraction of external elastic membrane border (EEM) and lumen-intima border (LIB) in intravascular ultrasound (IVUS) sequences aids atherosclerosis diagnosis. Existing IVUS segmentation networks ignored longitudinal relations among sequential images and neglected that IVUS images of different vascular conditions vary largely in intricacy and informativeness. As a result, they suffered from performance degradation in complicated parts in IVUS sequences. Approach . In this paper, we develop a 3D Pyramidal Densely-connected Network (PDN) with Adaptive learning and post-Correction guided by a novel cross-frame uncertainty (CFU). The proposed method is named PDN-AC. Specifically, the PDN enables the longitudinal information exploitation and the effective perception of size-varied vessel regions in IVUS samples, by pyramidally connecting multi-scale 3D dilated convolutions. Additionally, the CFU enhances the robustness of the method to complicated pathology from the frame-level (f-CFU) and pixel-level (p-CFU) via exploiting cross-frame knowledge in IVUS sequences. The f-CFU weighs the complexity of IVUS frames and steers an adaptive sampling during the PDN training. The p-CFU visualizes uncertain pixels probably misclassified by the PDN and guides an active contour-based post-correction. Main results . Human and animal experiments were conducted on IVUS datasets acquired from atherosclerosis patients and pigs. Results showed that the f-CFU weighted adaptive sampling reduced the Hausdorff distance (HD) by 10.53%/7.69% in EEM/LIB detection. Improvements achieved by the p-CFU guided post-correction were 2.94%/5.56%. Significance . The PDN-AC attained mean Jaccard values of 0.90/0.87 and HD values of 0.33/0.34 mm in EEM/LIB detection, preferable to state-of-the-art IVUS segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助YULIA采纳,获得30
1秒前
4444小熊完成签到 ,获得积分10
3秒前
我要查文献完成签到 ,获得积分10
6秒前
懦弱的叫兽完成签到 ,获得积分10
8秒前
坐等时光看轻自己完成签到,获得积分10
8秒前
tttt完成签到 ,获得积分10
9秒前
Rainstorm27完成签到,获得积分10
10秒前
曲聋五完成签到 ,获得积分0
11秒前
潇洒的诗桃完成签到,获得积分0
13秒前
13秒前
15秒前
畅快的忆丹完成签到,获得积分10
15秒前
gzsy完成签到 ,获得积分10
16秒前
neko发布了新的文献求助10
19秒前
20231125完成签到,获得积分10
21秒前
whichwhy发布了新的文献求助10
21秒前
11完成签到 ,获得积分10
22秒前
桐桐应助hao采纳,获得10
23秒前
26秒前
我来试试水完成签到 ,获得积分10
27秒前
29秒前
29秒前
29秒前
顺利一德发布了新的文献求助10
34秒前
莫茹发布了新的文献求助10
34秒前
临诗完成签到,获得积分10
37秒前
不必要再讨论适合与否完成签到,获得积分0
38秒前
doctor2023完成签到,获得积分10
38秒前
独摇之完成签到,获得积分10
41秒前
调调单单完成签到,获得积分10
42秒前
44秒前
Singularity应助科研通管家采纳,获得10
45秒前
李知恩应助科研通管家采纳,获得20
45秒前
HEIKU应助科研通管家采纳,获得10
45秒前
1+1应助科研通管家采纳,获得10
45秒前
123abc应助科研通管家采纳,获得10
45秒前
45秒前
科目三应助科研通管家采纳,获得10
46秒前
852应助科研通管家采纳,获得10
46秒前
科研通AI5应助科研通管家采纳,获得10
46秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671625
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779625
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610180
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093