Flow-Permeable and Tunable Metalens for Subdiffraction Waterborne-Sound Focusing

衍射 光学 基点 流量(数学) 栅栏 干扰(通信) 水下 切趾 物理 材料科学 声学 频道(广播) 电信 地质学 机械 计算机科学 海洋学
作者
Lijuan Fan,Jun Mei
出处
期刊:Physical review applied [American Physical Society]
卷期号:19 (2) 被引量:12
标识
DOI:10.1103/physrevapplied.19.024026
摘要

Metalenses with high-efficiency focusing functionality and a water-flow-permeable structure are desired in various acoustic applications, such as medical imaging and underwater navigation. Here, we propose a design paradigm for a metalens for waterborne sound with a compact and simple configuration. The metalens is composed of an open central region reserved as a steady water-flow channel, and a metagrating-based peripheral region consisting of a grating of meta-atoms. Each meta-atom containing two elliptical iron cylinders is smartly designed according to the grating diffraction theory and intelligent optimization algorithm, so that it can deflect a normally incident wave along the desired direction toward the focal spot. In this way, subdiffraction focusing with a high energy concentration ratio is achieved, which breaks the conventional Rayleigh-Abbe diffraction limit in the focal plane. Here the subdiffraction focusing is due to the coherent interference in the far field of the \ifmmode\pm\else\textpm\fi{}first-order diffracted waves from each meta-atom, and is attributed to the superoscillation phenomenon. Interestingly, the focal depth of the metalens can be conveniently tuned by applying a background water flow with different velocities and directions, and the superresolution focusing effect is sustained regardless of whether there is a water flow or not. Since the magnitude and direction of the water-flow velocity can be electrically controlled, the compact and open configuration of the metalens not only provides a flexible and practical solution for sharp and controllable sound focusing, but also has potential applications in metagrating-based planar acoustic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
1秒前
1秒前
Cindy发布了新的文献求助10
1秒前
科研通AI6应助luogan采纳,获得10
1秒前
2秒前
3秒前
3秒前
鲸鱼完成签到,获得积分10
3秒前
搜集达人应助zdxs采纳,获得10
3秒前
3秒前
领导范儿应助kelonyzy采纳,获得10
3秒前
朝思暮想完成签到,获得积分10
3秒前
李爱国应助honghuxian采纳,获得10
3秒前
卢珈馨发布了新的文献求助10
4秒前
12788发布了新的文献求助10
4秒前
5秒前
冯冯完成签到,获得积分10
5秒前
向北完成签到,获得积分10
6秒前
独特一刀发布了新的文献求助30
6秒前
ss发布了新的文献求助10
6秒前
虾虾发布了新的文献求助10
6秒前
NexusExplorer应助不知道采纳,获得10
7秒前
阿馨发布了新的文献求助30
7秒前
7秒前
七里香菜发布了新的文献求助10
7秒前
可乐龙猫发布了新的文献求助10
8秒前
qks发布了新的文献求助100
8秒前
菜菜完成签到,获得积分10
8秒前
9秒前
酷波er应助典雅的俊驰采纳,获得10
9秒前
9秒前
近代发布了新的文献求助10
9秒前
科研通AI6应助Leona666采纳,获得30
9秒前
chenling完成签到,获得积分10
10秒前
mmol发布了新的文献求助30
10秒前
山茶谱子完成签到,获得积分20
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648015
求助须知:如何正确求助?哪些是违规求助? 4774710
关于积分的说明 15042383
捐赠科研通 4807069
什么是DOI,文献DOI怎么找? 2570494
邀请新用户注册赠送积分活动 1527283
关于科研通互助平台的介绍 1486389