Deep Learning Based on Enhanced MRI T1 Imaging to Differentiate Small-cell and Non-small-cell Primary Lung Cancers in Patients with Brain Metastases

医学 肺癌 磁共振成像 接收机工作特性 放射科 病态的 肿瘤科 内科学
作者
Linlin Sui,Shilong Chang,Linyan Xue,Jianing Wang,Yu Zhang,Kun Yang,Bu‐Lang Gao,Xiao-Ping Yin
出处
期刊:Current Medical Imaging Reviews [Bentham Science]
卷期号:19 (13) 被引量:5
标识
DOI:10.2174/1573405619666230130124408
摘要

Objectives: To differentiate the primary small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) for patients with brain metastases (BMs) based on a deep learning (DL) model using contrast-enhanced magnetic resonance imaging (MRI) T1 weighted (T1CE) images. Methods: Out of 711 patients with BMs of lung cancer origin (SCLC 232, NSCLC 479), the MRI datasets of 192 patients (lesions’ widths and heights > 30 pixels) with BMs from lung cancer (73 SCLC and 119 NSCLC) confirmed pathologically were enrolled, retrospectively. A typical convolutional neural network ResNet18 was applied for the automatic classification of BMs lesions from lung cancer based on T1CE images, with training and testing groups randomized per patient to eliminate learning bias. A 5-fold cross-validation was performed to evaluate the classification of the model. The receiver operating characteristic (ROC) curve, accuracy, precision, recall and f1 score were calculated. Results: For a 5-fold cross-validation test, the DL model achieved AUCs of 0.8019 and 0.8024 for SCLC and NSCLC patients with BMs, respectively, and a mean overall accuracy of 0.7515±0.04. The DL model performed well in differentiating the primary SCLC and NSCLC with BMs. Conclusion: The proposed DL model is feasible and effective in differentiating the pathological subtypes of SCLC and NSCLC causing BMs, which may be used as a new tool for oncologists to diagnose noninvasively BMs and guide therapy based on the imaging structure of tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七七完成签到 ,获得积分10
1秒前
安安安安发布了新的文献求助10
1秒前
斯文败类应助瘦瘦采纳,获得10
2秒前
华仔应助零度采纳,获得10
3秒前
4秒前
可爱的函函应助Missyang采纳,获得10
8秒前
开开发布了新的文献求助10
9秒前
yrp发布了新的文献求助10
9秒前
木九发布了新的文献求助10
9秒前
啊啊啊啊啊叶完成签到 ,获得积分10
10秒前
尊敬的垣完成签到,获得积分10
12秒前
12秒前
15秒前
15秒前
麦麦脆汁鸡完成签到,获得积分10
16秒前
黄可以发布了新的文献求助10
18秒前
英姑应助木九采纳,获得10
18秒前
19秒前
MikL完成签到,获得积分10
21秒前
22秒前
25秒前
尊敬的垣发布了新的文献求助10
26秒前
27秒前
27秒前
yiyayiyayouhhh完成签到,获得积分20
29秒前
小牧鱼发布了新的文献求助10
29秒前
科研通AI2S应助用户简介采纳,获得10
29秒前
lin应助科研通管家采纳,获得30
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
酷波er应助科研通管家采纳,获得10
30秒前
无花果应助科研通管家采纳,获得10
30秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
爆米花应助科研通管家采纳,获得10
30秒前
lin应助科研通管家采纳,获得10
30秒前
enterdawn应助科研通管家采纳,获得10
30秒前
思源应助科研通管家采纳,获得10
30秒前
SciGPT应助科研通管家采纳,获得10
30秒前
Lucas应助科研通管家采纳,获得10
30秒前
30秒前
大模型应助陆驳采纳,获得10
36秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267700
求助须知:如何正确求助?哪些是违规求助? 2907116
关于积分的说明 8340741
捐赠科研通 2577863
什么是DOI,文献DOI怎么找? 1401249
科研通“疑难数据库(出版商)”最低求助积分说明 655005
邀请新用户注册赠送积分活动 634008