已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning Based on Enhanced MRI T1 Imaging to Differentiate Small-cell and Non-small-cell Primary Lung Cancers in Patients with Brain Metastases

医学 肺癌 磁共振成像 接收机工作特性 放射科 病态的 肿瘤科 内科学
作者
Lianyu Sui,Shilong Chang,Linyan Xue,Jianing Wang,Yu Zhang,Kun Yang,Bu‐Lang Gao,Xiao-Ping Yin
出处
期刊:Current Medical Imaging Reviews [Bentham Science Publishers]
卷期号:19 (13) 被引量:5
标识
DOI:10.2174/1573405619666230130124408
摘要

Objectives: To differentiate the primary small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) for patients with brain metastases (BMs) based on a deep learning (DL) model using contrast-enhanced magnetic resonance imaging (MRI) T1 weighted (T1CE) images. Methods: Out of 711 patients with BMs of lung cancer origin (SCLC 232, NSCLC 479), the MRI datasets of 192 patients (lesions’ widths and heights > 30 pixels) with BMs from lung cancer (73 SCLC and 119 NSCLC) confirmed pathologically were enrolled, retrospectively. A typical convolutional neural network ResNet18 was applied for the automatic classification of BMs lesions from lung cancer based on T1CE images, with training and testing groups randomized per patient to eliminate learning bias. A 5-fold cross-validation was performed to evaluate the classification of the model. The receiver operating characteristic (ROC) curve, accuracy, precision, recall and f1 score were calculated. Results: For a 5-fold cross-validation test, the DL model achieved AUCs of 0.8019 and 0.8024 for SCLC and NSCLC patients with BMs, respectively, and a mean overall accuracy of 0.7515±0.04. The DL model performed well in differentiating the primary SCLC and NSCLC with BMs. Conclusion: The proposed DL model is feasible and effective in differentiating the pathological subtypes of SCLC and NSCLC causing BMs, which may be used as a new tool for oncologists to diagnose noninvasively BMs and guide therapy based on the imaging structure of tumors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linkman发布了新的文献求助10
2秒前
3秒前
4秒前
HS发布了新的文献求助10
7秒前
7秒前
9秒前
dalong发布了新的文献求助10
9秒前
11秒前
火火火完成签到,获得积分10
11秒前
11秒前
0000完成签到 ,获得积分10
12秒前
12秒前
Arpeggione发布了新的文献求助10
13秒前
15秒前
Billy发布了新的文献求助10
15秒前
大模型应助小丸子采纳,获得10
15秒前
cc完成签到,获得积分10
16秒前
azhou176完成签到,获得积分10
16秒前
斯文败类应助美满悲采纳,获得10
16秒前
bxxxxx应助shinn采纳,获得50
17秒前
17秒前
18秒前
巫寻发布了新的文献求助20
18秒前
黑山路老军医完成签到,获得积分20
19秒前
21秒前
长风完成签到,获得积分10
23秒前
今后应助cc采纳,获得30
23秒前
ayang001发布了新的文献求助10
23秒前
无误发布了新的文献求助10
23秒前
26秒前
26秒前
空里流霜不觉飞完成签到 ,获得积分10
26秒前
小丸子发布了新的文献求助10
27秒前
啥文献找不到完成签到,获得积分10
27秒前
27秒前
龙06应助shinn采纳,获得10
28秒前
28秒前
29秒前
29秒前
linkman发布了新的文献求助10
30秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
宽量程高线性度柔性压力传感器的逆向设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980612
求助须知:如何正确求助?哪些是违规求助? 3524503
关于积分的说明 11221754
捐赠科研通 3261938
什么是DOI,文献DOI怎么找? 1800981
邀请新用户注册赠送积分活动 879568
科研通“疑难数据库(出版商)”最低求助积分说明 807320