离域电子
氧化物
阴极
离子
材料科学
电子
化学物理
磁滞
电池(电)
过渡金属
氧化还原
原子物理学
纳米技术
凝聚态物理
化学
物理
物理化学
功率(物理)
生物化学
有机化学
量子力学
冶金
催化作用
作者
Robert A. House,Gregory J. Rees,Kit McColl,John‐Joseph Marie,Mirian García‐Fernández,Abhishek Nag,Ke‐Jin Zhou,Simon J. Cassidy,Benjamin J. Morgan,M. Saïful Islam,Peter G. Bruce
出处
期刊:Nature Energy
[Springer Nature]
日期:2023-02-16
卷期号:8 (4): 351-360
被引量:50
标识
DOI:10.1038/s41560-023-01211-0
摘要
Oxide ions in transition metal oxide cathodes can store charge at high voltage offering a route towards higher energy density batteries. However, upon charging these cathodes, the oxidized oxide ions condense to form molecular O2 trapped in the material. Consequently, the discharge voltage is much lower than charge, leading to undesirable voltage hysteresis. Here we capture the nature of the electron holes on O2− before O2 formation by exploiting the suppressed transition metal rearrangement in ribbon-ordered Na0.6[Li0.2Mn0.8]O2. We show that the electron holes formed are delocalized across the oxide ions coordinated to two Mn (O–Mn2) arranged in ribbons in the transition metal layers. Furthermore, we track these delocalized hole states as they gradually localize in the structure in the form of trapped molecular O2 over a period of days. Establishing the nature of hole states on oxide ions is important if truly reversible high-voltage O-redox cathodes are to be realized. The mechanism of oxygen redox in high-energy transition metal oxide cathodes is elusive. Here the authors illustrate the nature of the electron-hole states on oxide ions, offering insights for realizing reversible, high-voltage cathodes.
科研通智能强力驱动
Strongly Powered by AbleSci AI