材料科学
纳米复合材料
钛酸钡
球磨机
生物相容性
电介质
模拟体液
复合材料
化学工程
极限抗拉强度
陶瓷
扫描电子显微镜
核化学
冶金
工程类
化学
光电子学
作者
Sujata Swain,Rakesh Bhaskar,Kannan Badri Narayanan,Mukesh Kumar Gupta,Sonia Sharma,Sudip Dasgupta,Sung Soo Han,Pawan Kumar
标识
DOI:10.1088/1748-605x/acb8f1
摘要
Abstract Bone implants fabricated using nanocomposites containing hydroxyapatite (HA) and barium titanate (BT) show osteoconductive, osteoinductive, osteointegration, and piezoelectricity properties for bone regeneration applications. In our present study, HA and BT nanopowders were synthesized using high-energy ball-milling-assisted solid-state reaction with precursors of calcium carbonate and ammonium dihydrogen phosphate, and barium carbonate and titanium oxide powder mixtures, respectively. Hexagonal HA and tetragonal BT phases were formed after calcination at 700 and 1000 °C, respectively. Subsequently, hydroxyapatite/barium titanate (HA/BT) nanocomposites with different weight percentages of HA and BT were prepared by ball-milling, then compacted and sintered at two different temperatures to endow these bioceramics with better mechanical, dielectric, and biological properties for bone regeneration. Microstructure, crystal phases, and molecular structure characterizations of these sintered HA/BT nanocomposite compacts (SHBNCs) were performed using field-emission scanning electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy, respectively. Bulk density was evaluated using the Archimedes method. HA/BT nanocomposites with increased BT content showed enhanced dielectric properties, and the dielectric constant ( ϵ r ) value for 5HA/95BT was ∼182 at 100 Hz. Mechanical properties such as Vicker’s hardness, fracture toughness, yield strength, and diametral tensile strength were also investigated. The hemolysis assay of SHBNCs exhibited hemocompatibility. The effect of these SHBNCs as implants on the in vitro cytocompatibility and cell viability of MG-63 osteoblast-like cells was assessed by MTT assay and live/dead staining, respectively. 15HA/85BT showed increased metabolic activity with a higher number of live cells than BT after the culture period. Overall, the SHBNCs can be used as orthopedic implants for bone regeneration applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI