Maritime ship detection algorithm based on improved YOLOv4

过度拟合 计算机科学 点式的 稳健性(进化) 卷积(计算机科学) 算法 功能(生物学) 平滑的 人工智能 数据挖掘 实时计算 机器学习 人工神经网络 计算机视觉 数学 进化生物学 生物 基因 生物化学 数学分析 化学
作者
Wangcheng Chen,Yingshu Li,Xuemei Wang,Mingjing Huang,Zixiang Kang,Xiang Chen
标识
DOI:10.1117/12.2660064
摘要

Maritime ship detection technology has important value in both the military field and maritime supervision. In terms of traditional detection method of maritime ship with low accuracy under complicated situations, in this paper, we adopt a new detection approach based on the improvement of YOLOv4 in order to realize automatic testing of maritime ship under complex circumstances by deep learning. It aims to adopt lightweight network GhostNet as features to extract the network. Depth-separable convolution will be converted to pointwise convolution first and then transformed into depthwise convolution. The network parameter will be reduced while ensuring the accuracy of testing. The accuracy of testing of maritime ship will be further improved by revising activation function as SMU, combining lose function Alpha-IoU and redesigning lose function CIOU. In order to verify the performance of the algorithm in foggy environment, the interference of foggy weather environment is fully considered when generating the training dataset of maritime ships. During training, Mosaic data enhancements were added to the samples to enhance experimental robustness. The loss function was improved using label smoothing techniques to prevent overfitting. Experimental results showed that when the confidence level is 0.5, compared with the original YOLOv4, the average accuracy of the proposed algorithm reaches 99.97% when the number of parameters is reduced by nearly 84.92%. When the ship target is tiny, the testing result is also highly accurate. Therefore, the method can meet the accuracy requirements of real-time processing of maritime vessel detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独孤幻月96应助senli2018采纳,获得10
2秒前
萤火虫发布了新的文献求助10
2秒前
3秒前
5秒前
赘婿应助cf2v采纳,获得10
5秒前
5秒前
积极松完成签到 ,获得积分10
5秒前
司空悒完成签到,获得积分0
6秒前
6秒前
xiaou发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
苻慕梅应助aa采纳,获得10
7秒前
8秒前
黄风小圣完成签到,获得积分10
9秒前
9秒前
小华完成签到 ,获得积分10
9秒前
lh发布了新的文献求助10
10秒前
英俊的铭应助陈文文采纳,获得10
10秒前
哗啦啦啦完成签到,获得积分10
10秒前
丘比特应助揍个大西瓜采纳,获得10
10秒前
看得到太阳嘛完成签到,获得积分20
11秒前
11秒前
拉拉啊了发布了新的文献求助10
11秒前
冷酷的听兰完成签到,获得积分10
11秒前
犹豫耳机完成签到,获得积分10
11秒前
yaozi发布了新的文献求助10
11秒前
11秒前
12秒前
75986686发布了新的文献求助10
12秒前
研友_VZG7GZ应助花筱一采纳,获得10
12秒前
12秒前
12秒前
Wang发布了新的文献求助10
13秒前
14秒前
星落枝头发布了新的文献求助10
14秒前
15秒前
CipherSage应助拉拉啊了采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436097
求助须知:如何正确求助?哪些是违规求助? 4548199
关于积分的说明 14212530
捐赠科研通 4468375
什么是DOI,文献DOI怎么找? 2448993
邀请新用户注册赠送积分活动 1439942
关于科研通互助平台的介绍 1416594