亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Maritime ship detection algorithm based on improved YOLOv4

过度拟合 计算机科学 点式的 稳健性(进化) 卷积(计算机科学) 算法 功能(生物学) 平滑的 人工智能 数据挖掘 实时计算 机器学习 人工神经网络 计算机视觉 数学 进化生物学 生物 基因 生物化学 数学分析 化学
作者
Wangcheng Chen,Yingshu Li,Xuemei Wang,Mingjing Huang,Zixiang Kang,Xiang Chen
标识
DOI:10.1117/12.2660064
摘要

Maritime ship detection technology has important value in both the military field and maritime supervision. In terms of traditional detection method of maritime ship with low accuracy under complicated situations, in this paper, we adopt a new detection approach based on the improvement of YOLOv4 in order to realize automatic testing of maritime ship under complex circumstances by deep learning. It aims to adopt lightweight network GhostNet as features to extract the network. Depth-separable convolution will be converted to pointwise convolution first and then transformed into depthwise convolution. The network parameter will be reduced while ensuring the accuracy of testing. The accuracy of testing of maritime ship will be further improved by revising activation function as SMU, combining lose function Alpha-IoU and redesigning lose function CIOU. In order to verify the performance of the algorithm in foggy environment, the interference of foggy weather environment is fully considered when generating the training dataset of maritime ships. During training, Mosaic data enhancements were added to the samples to enhance experimental robustness. The loss function was improved using label smoothing techniques to prevent overfitting. Experimental results showed that when the confidence level is 0.5, compared with the original YOLOv4, the average accuracy of the proposed algorithm reaches 99.97% when the number of parameters is reduced by nearly 84.92%. When the ship target is tiny, the testing result is also highly accurate. Therefore, the method can meet the accuracy requirements of real-time processing of maritime vessel detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
4秒前
Orange应助happy贼王采纳,获得10
7秒前
RR发布了新的文献求助10
8秒前
HUOZHUANGCHAO完成签到,获得积分10
10秒前
11秒前
Achu发布了新的文献求助10
16秒前
小葛完成签到,获得积分10
18秒前
18秒前
秋殇浅寞完成签到,获得积分10
20秒前
秋殇浅寞发布了新的文献求助30
23秒前
Owen应助月白lala采纳,获得10
25秒前
FashionBoy应助Juniorrr采纳,获得20
27秒前
27秒前
拓跋半雪发布了新的文献求助30
31秒前
happy贼王发布了新的文献求助10
31秒前
lsl完成签到 ,获得积分10
35秒前
36秒前
38秒前
41秒前
小丿丫丿丫完成签到 ,获得积分10
41秒前
happy贼王发布了新的文献求助10
44秒前
45秒前
斯文败类应助RR采纳,获得10
47秒前
不说再见发布了新的文献求助10
49秒前
happy贼王完成签到,获得积分10
49秒前
领导范儿应助嘚嘚采纳,获得10
51秒前
自由的中蓝完成签到 ,获得积分10
53秒前
1分钟前
1分钟前
拓跋半雪完成签到,获得积分10
1分钟前
yfq1018发布了新的文献求助10
1分钟前
zz发布了新的文献求助10
1分钟前
李梓航完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
kkk发布了新的文献求助10
1分钟前
yfq1018完成签到,获得积分20
1分钟前
遗忘完成签到,获得积分10
1分钟前
Milton_z完成签到 ,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5253515
求助须知:如何正确求助?哪些是违规求助? 4416821
关于积分的说明 13750562
捐赠科研通 4289289
什么是DOI,文献DOI怎么找? 2353359
邀请新用户注册赠送积分活动 1350077
关于科研通互助平台的介绍 1309966