Maritime ship detection algorithm based on improved YOLOv4

过度拟合 计算机科学 点式的 稳健性(进化) 卷积(计算机科学) 算法 功能(生物学) 平滑的 人工智能 数据挖掘 实时计算 机器学习 人工神经网络 计算机视觉 数学 进化生物学 生物 基因 生物化学 数学分析 化学
作者
Wangcheng Chen,Yingshu Li,Xuemei Wang,Mingjing Huang,Zixiang Kang,Xiang Chen
标识
DOI:10.1117/12.2660064
摘要

Maritime ship detection technology has important value in both the military field and maritime supervision. In terms of traditional detection method of maritime ship with low accuracy under complicated situations, in this paper, we adopt a new detection approach based on the improvement of YOLOv4 in order to realize automatic testing of maritime ship under complex circumstances by deep learning. It aims to adopt lightweight network GhostNet as features to extract the network. Depth-separable convolution will be converted to pointwise convolution first and then transformed into depthwise convolution. The network parameter will be reduced while ensuring the accuracy of testing. The accuracy of testing of maritime ship will be further improved by revising activation function as SMU, combining lose function Alpha-IoU and redesigning lose function CIOU. In order to verify the performance of the algorithm in foggy environment, the interference of foggy weather environment is fully considered when generating the training dataset of maritime ships. During training, Mosaic data enhancements were added to the samples to enhance experimental robustness. The loss function was improved using label smoothing techniques to prevent overfitting. Experimental results showed that when the confidence level is 0.5, compared with the original YOLOv4, the average accuracy of the proposed algorithm reaches 99.97% when the number of parameters is reduced by nearly 84.92%. When the ship target is tiny, the testing result is also highly accurate. Therefore, the method can meet the accuracy requirements of real-time processing of maritime vessel detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LSY完成签到 ,获得积分10
刚刚
Lucas应助苏silence采纳,获得10
刚刚
友好雅山发布了新的文献求助10
刚刚
hushan53发布了新的文献求助10
刚刚
从容的完成签到 ,获得积分10
1秒前
云悠水澈完成签到,获得积分10
1秒前
顺利毕业完成签到,获得积分10
1秒前
炸鸡发布了新的文献求助10
1秒前
1秒前
量子星尘发布了新的文献求助20
1秒前
2秒前
Zz完成签到 ,获得积分10
2秒前
于林渤完成签到,获得积分20
2秒前
愚者先生完成签到 ,获得积分10
2秒前
狄百招完成签到,获得积分10
2秒前
2秒前
殷勤的紫槐应助咿呀咿呀哟采纳,获得200
2秒前
悦耳短靴完成签到 ,获得积分10
2秒前
3秒前
HTY完成签到 ,获得积分10
3秒前
优秀不愁发布了新的文献求助10
3秒前
舒心发布了新的文献求助10
3秒前
小白完成签到,获得积分10
3秒前
鹿呦完成签到 ,获得积分10
3秒前
JamesPei应助会爬树的苹果采纳,获得10
3秒前
zhuling发布了新的文献求助10
4秒前
番茄炒西红柿完成签到,获得积分10
5秒前
gaozy完成签到,获得积分10
5秒前
充电宝应助奋斗灵珊采纳,获得10
6秒前
6秒前
Akim应助夏冰采纳,获得10
6秒前
6秒前
wanci应助lvzhihao采纳,获得10
6秒前
Zzz发布了新的文献求助10
7秒前
xzy发布了新的文献求助10
7秒前
淡淡代珊发布了新的文献求助10
7秒前
yan发布了新的文献求助10
8秒前
古丹娜完成签到 ,获得积分10
8秒前
whuhustwit发布了新的文献求助10
9秒前
无私无招发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997