Maritime ship detection algorithm based on improved YOLOv4

过度拟合 计算机科学 点式的 稳健性(进化) 卷积(计算机科学) 算法 功能(生物学) 平滑的 人工智能 数据挖掘 实时计算 机器学习 人工神经网络 计算机视觉 数学 进化生物学 生物 基因 生物化学 数学分析 化学
作者
Wangcheng Chen,Yingshu Li,Xuemei Wang,Mingjing Huang,Zixiang Kang,Xiang Chen
标识
DOI:10.1117/12.2660064
摘要

Maritime ship detection technology has important value in both the military field and maritime supervision. In terms of traditional detection method of maritime ship with low accuracy under complicated situations, in this paper, we adopt a new detection approach based on the improvement of YOLOv4 in order to realize automatic testing of maritime ship under complex circumstances by deep learning. It aims to adopt lightweight network GhostNet as features to extract the network. Depth-separable convolution will be converted to pointwise convolution first and then transformed into depthwise convolution. The network parameter will be reduced while ensuring the accuracy of testing. The accuracy of testing of maritime ship will be further improved by revising activation function as SMU, combining lose function Alpha-IoU and redesigning lose function CIOU. In order to verify the performance of the algorithm in foggy environment, the interference of foggy weather environment is fully considered when generating the training dataset of maritime ships. During training, Mosaic data enhancements were added to the samples to enhance experimental robustness. The loss function was improved using label smoothing techniques to prevent overfitting. Experimental results showed that when the confidence level is 0.5, compared with the original YOLOv4, the average accuracy of the proposed algorithm reaches 99.97% when the number of parameters is reduced by nearly 84.92%. When the ship target is tiny, the testing result is also highly accurate. Therefore, the method can meet the accuracy requirements of real-time processing of maritime vessel detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助lion采纳,获得10
刚刚
柠檬小麦青汁完成签到,获得积分10
刚刚
我是老大应助燕真采纳,获得10
1秒前
1秒前
喜多米430发布了新的文献求助10
1秒前
dbhfdgsh发布了新的文献求助10
2秒前
到江南散步完成签到,获得积分10
2秒前
2秒前
Huzhu应助cao_ming采纳,获得10
2秒前
高晗发布了新的文献求助10
3秒前
3秒前
科研通AI6应助Li F采纳,获得10
3秒前
4秒前
开口笑完成签到,获得积分10
4秒前
绝味大姨发布了新的文献求助10
4秒前
威武的初曼完成签到 ,获得积分10
4秒前
一根芦苇完成签到,获得积分10
4秒前
隐形曼青应助喵喵喵采纳,获得10
5秒前
5秒前
6秒前
6秒前
LIN完成签到,获得积分10
6秒前
6秒前
深情安青应助eternity136采纳,获得10
6秒前
wanci应助尊敬伟泽采纳,获得10
7秒前
edge发布了新的文献求助10
7秒前
huhiji完成签到,获得积分10
7秒前
ZYL发布了新的文献求助10
8秒前
开口笑发布了新的文献求助10
8秒前
余芝完成签到 ,获得积分10
8秒前
dbhfdgsh完成签到,获得积分10
9秒前
10秒前
mm完成签到,获得积分10
11秒前
11秒前
标致小蘑菇完成签到,获得积分10
11秒前
陆倩完成签到,获得积分10
12秒前
红红酱发布了新的文献求助10
12秒前
久久发布了新的文献求助10
12秒前
12秒前
李音完成签到 ,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579766
关于积分的说明 14370418
捐赠科研通 4507955
什么是DOI,文献DOI怎么找? 2470343
邀请新用户注册赠送积分活动 1457229
关于科研通互助平台的介绍 1431172