Maritime ship detection algorithm based on improved YOLOv4

过度拟合 计算机科学 点式的 稳健性(进化) 卷积(计算机科学) 算法 功能(生物学) 平滑的 人工智能 数据挖掘 实时计算 机器学习 人工神经网络 计算机视觉 数学 进化生物学 生物 基因 生物化学 数学分析 化学
作者
Wangcheng Chen,Yingshu Li,Xuemei Wang,Mingjing Huang,Zixiang Kang,Xiang Chen
标识
DOI:10.1117/12.2660064
摘要

Maritime ship detection technology has important value in both the military field and maritime supervision. In terms of traditional detection method of maritime ship with low accuracy under complicated situations, in this paper, we adopt a new detection approach based on the improvement of YOLOv4 in order to realize automatic testing of maritime ship under complex circumstances by deep learning. It aims to adopt lightweight network GhostNet as features to extract the network. Depth-separable convolution will be converted to pointwise convolution first and then transformed into depthwise convolution. The network parameter will be reduced while ensuring the accuracy of testing. The accuracy of testing of maritime ship will be further improved by revising activation function as SMU, combining lose function Alpha-IoU and redesigning lose function CIOU. In order to verify the performance of the algorithm in foggy environment, the interference of foggy weather environment is fully considered when generating the training dataset of maritime ships. During training, Mosaic data enhancements were added to the samples to enhance experimental robustness. The loss function was improved using label smoothing techniques to prevent overfitting. Experimental results showed that when the confidence level is 0.5, compared with the original YOLOv4, the average accuracy of the proposed algorithm reaches 99.97% when the number of parameters is reduced by nearly 84.92%. When the ship target is tiny, the testing result is also highly accurate. Therefore, the method can meet the accuracy requirements of real-time processing of maritime vessel detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
Ava应助乙烯采纳,获得30
3秒前
4秒前
4秒前
4秒前
yuan1226完成签到 ,获得积分10
4秒前
4秒前
6秒前
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
9秒前
灰灰喵完成签到 ,获得积分10
10秒前
ycg发布了新的文献求助10
10秒前
Ahan发布了新的文献求助10
10秒前
公冶长发布了新的文献求助10
11秒前
情怀应助赖账的坦克采纳,获得10
14秒前
14秒前
大力沛萍发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助50
17秒前
苹果紊完成签到,获得积分10
17秒前
18秒前
18秒前
Xinxxx应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
Lu_ckilly完成签到 ,获得积分10
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
852应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
一寒完成签到 ,获得积分10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
star应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
18秒前
英姑应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
18秒前
lili应助科研通管家采纳,获得30
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4919581
求助须知:如何正确求助?哪些是违规求助? 4191579
关于积分的说明 13017920
捐赠科研通 3961771
什么是DOI,文献DOI怎么找? 2171864
邀请新用户注册赠送积分活动 1189776
关于科研通互助平台的介绍 1098444