Maritime ship detection algorithm based on improved YOLOv4

过度拟合 计算机科学 点式的 稳健性(进化) 卷积(计算机科学) 算法 功能(生物学) 平滑的 人工智能 数据挖掘 实时计算 机器学习 人工神经网络 计算机视觉 数学 进化生物学 生物 基因 生物化学 数学分析 化学
作者
Wangcheng Chen,Yingshu Li,Xuemei Wang,Mingjing Huang,Zixiang Kang,Xiang Chen
标识
DOI:10.1117/12.2660064
摘要

Maritime ship detection technology has important value in both the military field and maritime supervision. In terms of traditional detection method of maritime ship with low accuracy under complicated situations, in this paper, we adopt a new detection approach based on the improvement of YOLOv4 in order to realize automatic testing of maritime ship under complex circumstances by deep learning. It aims to adopt lightweight network GhostNet as features to extract the network. Depth-separable convolution will be converted to pointwise convolution first and then transformed into depthwise convolution. The network parameter will be reduced while ensuring the accuracy of testing. The accuracy of testing of maritime ship will be further improved by revising activation function as SMU, combining lose function Alpha-IoU and redesigning lose function CIOU. In order to verify the performance of the algorithm in foggy environment, the interference of foggy weather environment is fully considered when generating the training dataset of maritime ships. During training, Mosaic data enhancements were added to the samples to enhance experimental robustness. The loss function was improved using label smoothing techniques to prevent overfitting. Experimental results showed that when the confidence level is 0.5, compared with the original YOLOv4, the average accuracy of the proposed algorithm reaches 99.97% when the number of parameters is reduced by nearly 84.92%. When the ship target is tiny, the testing result is also highly accurate. Therefore, the method can meet the accuracy requirements of real-time processing of maritime vessel detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
荒野风完成签到,获得积分20
1秒前
1秒前
1秒前
摅羽完成签到 ,获得积分10
1秒前
1秒前
苏州小北发布了新的文献求助10
2秒前
mwen完成签到,获得积分10
2秒前
我是老大应助无限青柏采纳,获得10
4秒前
无极微光应助Thorns采纳,获得20
4秒前
在水一方应助YE采纳,获得10
5秒前
5秒前
5秒前
矜持发布了新的文献求助10
6秒前
Doctor_Peng完成签到,获得积分10
6秒前
煤炭不甜发布了新的文献求助10
6秒前
7秒前
华仔应助明天会更好采纳,获得10
7秒前
顺利的琳发布了新的文献求助10
8秒前
9秒前
9秒前
nuonuoweng完成签到,获得积分10
9秒前
BOMB发布了新的文献求助30
10秒前
苗条世德完成签到,获得积分10
10秒前
10秒前
10秒前
Maize Man完成签到,获得积分10
10秒前
单纯寒凝发布了新的文献求助10
12秒前
12秒前
Ava应助称心凡霜采纳,获得10
13秒前
快乐小瑶发布了新的文献求助10
13秒前
13秒前
英俊的铭应助sxmt123456789采纳,获得30
14秒前
搜集达人应助伶俐的夜梦采纳,获得50
14秒前
煤炭不甜完成签到,获得积分10
14秒前
16秒前
万能图书馆应助矜持采纳,获得10
16秒前
kekehuang关注了科研通微信公众号
16秒前
16秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610713
求助须知:如何正确求助?哪些是违规求助? 4695216
关于积分的说明 14885929
捐赠科研通 4723170
什么是DOI,文献DOI怎么找? 2545217
邀请新用户注册赠送积分活动 1509998
关于科研通互助平台的介绍 1473110