Quantitative source apportionment and driver identification of soil heavy metals using advanced machine learning techniques

分摊 污染 环境科学 鉴定(生物学) 环境工程 计算机科学 政治学 生态学 植物 生物 法学
作者
Jiatong Zheng,Peng Wang,Hangyuan Shi,Changwei Zhuang,Yirong Deng,Xiaojun Yang,Fei Huang,Rongbo Xiao
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:873: 162371-162371 被引量:12
标识
DOI:10.1016/j.scitotenv.2023.162371
摘要

The accurate identification of pollution sources is essential for the prevention and control of possible pollution from soil heavy metals (SHMs). However, the positive matrix factorisation (PMF) model has been widely used as a conventional method for pollution source apportionment, and the classification of source apportionment results mainly relies on existing research and expert experience, which can result in high subjectivity in the source interpretation. To address this limitation, a comprehensive source apportionment framework was developed based on advanced machine learning techniques that combine self-organizing mapping and PMF with a gradient boosting decision tree (GBDT) model. Analysis of Cd, Pb, Zn, Cu, Cr, and Ni in 272 topsoils showed that the average contents of six heavy metals were 1.72-13.79 times greater than corresponding background values, among which Cd pollution was relatively serious, with 66.91 % of the sites having higher values than the specified soil risk screening values. The PMF results revealed that 79.43 % of Pb was related to vehicle emissions and atmospheric deposition, 79.32 % of Cd and 38.84 % of Zn were related to sewage irrigation, and 85.97 % of Cr and 85.50 % of Ni were from natural sources. Moreover, the GBDT detected that industrial network density, water network density, and Fe2O3 content were the major drivers influencing each pollution source. Overall, the novelty of this study lies in the development of an improved framework based on advanced machine learning techniques that led to the accurate identification of the sources of SHM pollution, which can provide more detailed support for environmental protection departments to propose targeted control measures for soil pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jimmybythebay完成签到,获得积分10
1秒前
科研通AI2S应助Tonald Yang采纳,获得10
2秒前
完美世界应助HUZHAO采纳,获得10
3秒前
张颖完成签到 ,获得积分10
4秒前
4秒前
天天浇水完成签到,获得积分10
5秒前
小children丙完成签到,获得积分10
7秒前
缘分完成签到,获得积分10
7秒前
wyuxilong完成签到,获得积分10
8秒前
keyanxiaobai发布了新的文献求助10
9秒前
小灰灰完成签到 ,获得积分10
9秒前
清脆的乌冬面完成签到,获得积分10
9秒前
panfan完成签到,获得积分10
10秒前
谭阿面完成签到,获得积分10
10秒前
霜降完成签到,获得积分10
11秒前
小胡完成签到,获得积分10
11秒前
chem完成签到,获得积分10
13秒前
称心的翠绿完成签到 ,获得积分10
13秒前
bkagyin应助hdd采纳,获得30
14秒前
浅色墨水完成签到,获得积分10
14秒前
啊呜完成签到,获得积分20
14秒前
15秒前
绿绿完成签到,获得积分10
15秒前
三寿完成签到,获得积分10
16秒前
传统的复天完成签到,获得积分10
16秒前
碧蓝曼冬完成签到 ,获得积分10
17秒前
tiger完成签到,获得积分10
18秒前
songdq完成签到,获得积分10
19秒前
23完成签到,获得积分10
19秒前
iMoney完成签到 ,获得积分10
20秒前
踏雪寻梅应助漫漫采纳,获得10
20秒前
标致冬日完成签到,获得积分10
20秒前
小笨猪完成签到,获得积分10
21秒前
21秒前
山月完成签到,获得积分10
21秒前
积极的尔白完成签到 ,获得积分10
21秒前
21秒前
洪礼训发布了新的文献求助10
22秒前
SJ完成签到,获得积分10
22秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3167282
求助须知:如何正确求助?哪些是违规求助? 2818793
关于积分的说明 7922334
捐赠科研通 2478522
什么是DOI,文献DOI怎么找? 1320396
科研通“疑难数据库(出版商)”最低求助积分说明 632776
版权声明 602443