Ultrasensitive Strain Sensor Based on a Tunnel Junction with an <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mrow><mml:mi>Al</mml:mi><mml:mi mathvariant="normal">N</mml:mi></mml:mrow><mml:mo>/</mml:mo><mml:mrow><mml:mi>Ga</mml:mi><mml:mi mathvariant="normal">N</mml:mi></mml:mrow></mml:math> Core-Shell Nanowire

量子隧道 纳米线 晶体管 材料科学 凝聚态物理 物理 光电子学 纳米技术 电压 量子力学
作者
Gongwei Hu,Fobao Huang,Jun-Feng Liu
出处
期刊:Physical review applied [American Physical Society]
卷期号:19 (1)
标识
DOI:10.1103/physrevapplied.19.014066
摘要

Piezotronic transistor operating in the quantum tunneling regime has recently roused wide interest for developing ultrasensitive strain sensing with applications in wearable electronics and human-machine interfaces. However, the lack of a strict theoretical demonstration from a quantum perspective renders the development of such an emerging area particularly slow due to their complex fabrication process and vulnerable experimental interference. Here, by combining third-dimensional self-consistent calculation with a nonequilibrium Green's function framework, we study the intrinsic device properties of piezotronic tunneling transistor (PTT) based on $\mathrm{Al}\mathrm{N}/\mathrm{Ga}\mathrm{N}$ core-shell nanowire. The results show that strain-induced piezoelectric polarization can remarkably tune tunneling barrier height and width, both of which are increased by tensile strain and decreased by compressive strain. At a moderate strain amplitude of 1.0% and bias of 2.0 V, the strain-induced change in effective barrier height and width can reach as high as 0.5 eV and 4.0 nm, respectively. This remarkable tunability in the barrier allows for an ultrahigh on/off current ratio ${10}^{17}$, and giant gauge factor 1.2 \ifmmode\times\else\texttimes\fi{} ${10}^{8}$ in current and 1.1 \ifmmode\times\else\texttimes\fi{} ${10}^{13}$ in resistance. The performance can be further optimized by properly tailoring device architectures, including insulator thickness, nanowire length, or core-shell size. Our demonstration of the PTT with combined quantum tunneling and piezotronic effect opens a window for designing highly sensitive, large on/off ratio and low-power strain sensing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dd发布了新的文献求助20
1秒前
3秒前
机智的Kiki发布了新的文献求助10
3秒前
777发布了新的文献求助10
4秒前
爱在西元前完成签到,获得积分10
4秒前
tsttst发布了新的文献求助10
4秒前
科研通AI2S应助阿悦采纳,获得10
5秒前
5秒前
orixero应助福福气采纳,获得10
5秒前
充电宝应助小马同学采纳,获得10
6秒前
6秒前
袁超完成签到,获得积分10
8秒前
木子完成签到,获得积分10
8秒前
YumiPg完成签到,获得积分10
8秒前
8秒前
66发布了新的文献求助10
9秒前
西瓜西瓜完成签到,获得积分10
10秒前
彩色绮南发布了新的文献求助10
10秒前
10秒前
机智的Kiki完成签到,获得积分10
11秒前
林松发布了新的文献求助10
11秒前
草莓完成签到,获得积分10
12秒前
12秒前
12秒前
Lucas应助Nick采纳,获得10
15秒前
加贝木杉完成签到,获得积分10
15秒前
16秒前
瘦瘦发布了新的文献求助10
16秒前
楼下的住发布了新的文献求助10
16秒前
岳莹晓完成签到 ,获得积分10
17秒前
17秒前
CodeCraft应助流草林采纳,获得10
17秒前
19秒前
66完成签到,获得积分20
19秒前
20秒前
20秒前
是ok耶完成签到,获得积分10
21秒前
只谈风月应助伶俐送终采纳,获得10
23秒前
JIAYU发布了新的文献求助30
23秒前
高分求助中
Evolution 2024
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2997229
求助须知:如何正确求助?哪些是违规求助? 2657705
关于积分的说明 7193807
捐赠科研通 2293035
什么是DOI,文献DOI怎么找? 1215732
科研通“疑难数据库(出版商)”最低求助积分说明 593300
版权声明 592825