Dockey: a modern integrated tool for large-scale molecular docking and virtual screening

码头 计算机科学 对接(动物) 虚拟筛选 自动停靠 蛋白质-配体对接 Python(编程语言) 图形用户界面 可视化 药物发现 生物信息学 数据挖掘 程序设计语言 化学 生物 医学 生物化学 基因 护理部 生物信息学
作者
Lianming Du,Chaoyue Geng,Qianglin Zeng,Ting Huang,Jie Tang,Yiwen Chu,Kelei Zhao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (2) 被引量:19
标识
DOI:10.1093/bib/bbad047
摘要

Abstract Molecular docking is a structure-based and computer-aided drug design approach that plays a pivotal role in drug discovery and pharmaceutical research. AutoDock is the most widely used molecular docking tool for study of protein–ligand interactions and virtual screening. Although many tools have been developed to streamline and automate the AutoDock docking pipeline, some of them still use outdated graphical user interfaces and have not been updated for a long time. Meanwhile, some of them lack cross-platform compatibility and evaluation metrics for screening lead compound candidates. To overcome these limitations, we have developed Dockey, a flexible and intuitive graphical interface tool with seamless integration of several useful tools, which implements a complete docking pipeline covering molecular sanitization, molecular preparation, paralleled docking execution, interaction detection and conformation visualization. Specifically, Dockey can detect the non-covalent interactions between small molecules and proteins and perform cross-docking between multiple receptors and ligands. It has the capacity to automatically dock thousands of ligands to multiple receptors and analyze the corresponding docking results in parallel. All the generated data will be kept in a project file that can be shared between any systems and computers with the pre-installation of Dockey. We anticipate that these unique characteristics will make it attractive for researchers to conduct large-scale molecular docking without complicated operations, particularly for beginners. Dockey is implemented in Python and freely available at https://github.com/lmdu/dockey.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吲哚好呀发布了新的文献求助10
刚刚
悦耳的城完成签到,获得积分10
刚刚
Song发布了新的文献求助10
刚刚
1秒前
小马甲应助超帅的凌翠采纳,获得10
3秒前
3秒前
呆萌笑晴完成签到,获得积分10
3秒前
5秒前
fffffffq完成签到,获得积分10
6秒前
6秒前
8秒前
柚子关注了科研通微信公众号
8秒前
顾家老攻完成签到,获得积分10
9秒前
mmssdd发布了新的文献求助10
10秒前
共享精神应助smj采纳,获得10
10秒前
曾经的刺猬完成签到,获得积分10
12秒前
12秒前
charcy完成签到,获得积分10
13秒前
14秒前
吲哚好呀发布了新的文献求助10
15秒前
kai完成签到,获得积分10
16秒前
lilli完成签到,获得积分10
16秒前
16秒前
王帅完成签到,获得积分10
17秒前
素和姣姣发布了新的文献求助10
17秒前
haoaaa发布了新的文献求助30
17秒前
Wenpandaen完成签到,获得积分10
19秒前
bubble完成签到,获得积分10
19秒前
科研pig发布了新的文献求助10
19秒前
mmssdd完成签到,获得积分10
21秒前
思源应助wzjs采纳,获得10
21秒前
21秒前
cwy完成签到,获得积分10
23秒前
iNk应助曾经的刺猬采纳,获得10
24秒前
kk_1315完成签到,获得积分10
24秒前
lime完成签到,获得积分10
25秒前
25秒前
26秒前
ttt完成签到,获得积分10
27秒前
思源应助吲哚好呀采纳,获得10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134791
求助须知:如何正确求助?哪些是违规求助? 2785712
关于积分的说明 7773726
捐赠科研通 2441524
什么是DOI,文献DOI怎么找? 1297985
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825