Artificial Intelligence in De novo Drug Design: Are We Still There?

计算机科学 人工智能 机器学习 药物开发 药品 药物发现 化学空间 领域(数学) 数据科学 风险分析(工程) 医学 生物信息学 药理学 生物 数学 纯数学
作者
Rajnish Kumar,Anju Sharma,Αθανάσιος Αλεξίου,Ghulam Md Ashraf
出处
期刊:Current Topics in Medicinal Chemistry [Bentham Science]
卷期号:22 (30): 2483-2492 被引量:2
标识
DOI:10.2174/1568026623666221017143244
摘要

The artificial intelligence (AI)-assisted design of drug candidates with novel structures and desired properties has received significant attention in the recent past, so related areas of forward prediction that aim to discover chemical matters worth synthesizing and further experimental investigation.The purpose behind developing AI-driven models is to explore the broader chemical space and suggest new drug candidate scaffolds with promising therapeutic value. Moreover, it is anticipated that such AI-based models may not only significantly reduce the cost and time but also decrease the attrition rate of drug candidates that fail to reach the desirable endpoints at the final stages of drug development. In an attempt to develop AI-based models for de novo drug design, numerous methods have been proposed by various study groups by applying machine learning and deep learning algorithms to chemical datasets. However, there are many challenges in obtaining accurate predictions, and real breakthroughs in de novo drug design are still scarce.In this review, we explore the recent trends in developing AI-based models for de novo drug design to assess the current status, challenges, and opportunities in the field.The consistently improved AI algorithms and the abundance of curated training chemical data indicate that AI-based de novo drug design should perform better than the current models. Improvements in the performance are warranted to obtain better outcomes in the form of potential drug candidates, which can perform well in in vivo conditions, especially in the case of more complex diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到,获得积分10
1秒前
汉堡包应助强健的小笼包采纳,获得10
1秒前
2秒前
邹冰洁发布了新的文献求助10
2秒前
寻舟者完成签到,获得积分10
2秒前
霸气的板栗完成签到,获得积分10
2秒前
直率的大开完成签到 ,获得积分10
3秒前
4秒前
李繁蕊完成签到,获得积分10
4秒前
7秒前
Wtj完成签到,获得积分10
9秒前
orixero应助liu采纳,获得10
9秒前
10秒前
cs完成签到,获得积分10
10秒前
11秒前
熊二的蜂蜜罐头完成签到,获得积分10
11秒前
12秒前
狒狒2022完成签到,获得积分10
12秒前
英姑应助hfut_lee采纳,获得10
13秒前
可靠夏彤完成签到 ,获得积分10
13秒前
李健应助lllllll采纳,获得10
14秒前
Owen应助gj2221423采纳,获得10
14秒前
16秒前
16秒前
小韩发布了新的文献求助10
17秒前
颜千琴完成签到,获得积分20
17秒前
钱多多完成签到,获得积分10
17秒前
gong完成签到,获得积分20
18秒前
19秒前
杭剑成完成签到,获得积分10
19秒前
无花果应助tian采纳,获得10
20秒前
21秒前
xue发布了新的文献求助10
22秒前
Augenstern发布了新的文献求助10
22秒前
吕半鬼完成签到,获得积分10
22秒前
23秒前
24秒前
zhangzhenwen1204完成签到 ,获得积分10
24秒前
浪浪浪完成签到 ,获得积分10
25秒前
25秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076615
求助须知:如何正确求助?哪些是违规求助? 2729583
关于积分的说明 7509104
捐赠科研通 2377778
什么是DOI,文献DOI怎么找? 1260780
科研通“疑难数据库(出版商)”最低求助积分说明 611183
版权声明 597203