EEG-based mental fatigue detection using linear prediction cepstral coefficients and Riemann spatial covariance matrix

计算机科学 人工智能 协方差 模式识别(心理学) 脑电图 特征提取 特征(语言学) 随机森林 数学 统计 心理学 语言学 精神科 哲学
作者
Kun Chen,Zhiyong Liu,Quan Liu,Qingsong Ai,Li Ma
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (6): 066021-066021 被引量:3
标识
DOI:10.1088/1741-2552/aca1e2
摘要

Objective. Establishing a mental fatigue monitoring system is of great importance as for severe fatigue may cause unimaginable consequences. Electroencephalogram (EEG) is often utilized for mental fatigue detection because of its high temporal resolution and ease of use. However, many EEG-based approaches for detecting mental fatigue only take into account the feature extraction of a single domain and do not fully exploit the information that EEG may offer.Approach. In our work, we propose a new algorithm for mental fatigue detection based on multi-domain feature extraction and fusion. EEG components representing fatigue are closely related in the past and present because fatigue is a dynamic and gradual process. Accordingly, the idea of linear prediction is used to fit the current value with a set of sample values in the past to calculate the linear prediction cepstral coefficients (LPCCs) as the time domain feature. Moreover, in order to better capture fatigue-related spatial domain information, the spatial covariance matrix of the original EEG signal is projected into the Riemannian tangent space using the Riemannian geometric method. Then multi-domain features are fused to obtain comprehensive spatio-temporal information.Main results. Experimental results prove the suggested algorithm outperforms existing state-of-the-art methods, achieving an average accuracy of 87.10% classification on the public dataset SEED-VIG (three categories) and 97.40% classification accuracy (two categories) on the dataset made by self-designed experiments.Significance. These findings show that our proposed strategy perform more effectively for mental fatigue detection based on EEG.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
欢乐马完成签到,获得积分10
2秒前
baby发布了新的文献求助10
2秒前
青岛发布了新的文献求助10
3秒前
健壮的怜烟应助开朗月饼采纳,获得20
4秒前
萧水白应助小陈爱科研采纳,获得10
4秒前
柯一一应助明ming到此一游采纳,获得10
4秒前
斯文败类应助中午吃什么采纳,获得10
5秒前
5秒前
泡沫完成签到,获得积分10
5秒前
斌bin完成签到,获得积分10
5秒前
6秒前
marongzhi发布了新的文献求助10
7秒前
传奇3应助yutou采纳,获得10
7秒前
9秒前
10秒前
贾舒涵发布了新的文献求助10
10秒前
青岛完成签到,获得积分20
10秒前
SYLH应助Zack采纳,获得10
10秒前
11秒前
繁荣的行天完成签到,获得积分10
11秒前
大模型应助碧蓝丹烟采纳,获得10
11秒前
12秒前
12秒前
14秒前
14秒前
甜甜圈发布了新的文献求助10
14秒前
火星上犀牛完成签到,获得积分10
15秒前
xiaofeiyan发布了新的文献求助10
16秒前
上官若男应助林昀采纳,获得10
16秒前
烟花应助笑点低的鸿采纳,获得10
16秒前
田様应助等待的飞阳采纳,获得10
16秒前
17秒前
苏比努尔发布了新的文献求助10
17秒前
17秒前
djy发布了新的文献求助10
17秒前
乐乐应助wuhan_wuhan采纳,获得10
17秒前
大个应助司空豁采纳,获得10
17秒前
阿黑路西发布了新的文献求助10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502568
关于积分的说明 11108738
捐赠科研通 3233292
什么是DOI,文献DOI怎么找? 1787239
邀请新用户注册赠送积分活动 870565
科研通“疑难数据库(出版商)”最低求助积分说明 802122