Estimation and prediction of the OD matrix in uncongested urban road network based on traffic flows using deep learning

计算机科学 人工神经网络 深度学习 人工智能 数据挖掘 基质(化学分析) 过程(计算) 循环神经网络 趋同(经济学) 机器学习 材料科学 经济 复合材料 经济增长 操作系统
作者
T. Pamuła,Renata Żochowska
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:117: 105550-105550 被引量:22
标识
DOI:10.1016/j.engappai.2022.105550
摘要

In this article, we propose a new method for OD (Origin–Destination)​ matrix prediction based on traffic data using deep learning. The input values of the developed model were determined based on data on the structure of the road network, origin and destination points of trips, as well as data on traffic intensity on road network sections recorded by video-sensing devices. The advantage of the method is that the complex process of data acquisition and processing is not required for the estimation and prediction of the matrix. Historical data and the iterative method of estimating a prior OD matrix were used only to generate training sequences for the neural network. The proposed method using deep learning neural networks with the long short-term memory (LSTM) or autoencoders layers (DLNa — deep learning networks with autoencoders) is characterized by relatively high accuracy and resistance to temporary missing data from several measurement points located in the urban road network. The case study was conducted for a network of a medium-sized city in Poland. The results show (average MAPE = 7.18% (LSTM), 6.80% (DLNa)) that the proposed method can have a practical implementation in real-time dynamic traffic assignment (DTA) systems for ITS applications. The proposed method of short-term forecasting the OD matrix does not require questionnaire research or detailed information on spatial development. Therefore, it is not as expensive and time-consuming as the methods based on these data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyjm完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
情怀应助nichendy采纳,获得10
4秒前
上官若男应助A拉拉拉采纳,获得10
5秒前
机智台灯完成签到,获得积分10
5秒前
5秒前
懒猫完成签到,获得积分20
5秒前
6秒前
6秒前
Yang完成签到,获得积分10
6秒前
Jasper应助干净翠桃采纳,获得10
7秒前
7秒前
Chen完成签到 ,获得积分10
7秒前
LuLan0401发布了新的文献求助10
8秒前
舒适逊发布了新的文献求助10
9秒前
9秒前
畅快璎发布了新的文献求助10
9秒前
自由的亿先完成签到 ,获得积分10
10秒前
10秒前
11秒前
Sharky发布了新的文献求助10
11秒前
影子发布了新的文献求助10
11秒前
a简很忙发布了新的文献求助10
11秒前
子浮关注了科研通微信公众号
12秒前
13秒前
13秒前
chai发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
香蕉觅云应助喜欢玩辅助采纳,获得10
14秒前
largpark完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3079871
求助须知:如何正确求助?哪些是违规求助? 2732588
关于积分的说明 7524713
捐赠科研通 2381420
什么是DOI,文献DOI怎么找? 1262876
科研通“疑难数据库(出版商)”最低求助积分说明 612123
版权声明 597460