Estimation and prediction of the OD matrix in uncongested urban road network based on traffic flows using deep learning

计算机科学 人工神经网络 深度学习 人工智能 数据挖掘 基质(化学分析) 过程(计算) 循环神经网络 趋同(经济学) 机器学习 经济增长 操作系统 复合材料 经济 材料科学
作者
T. Pamuła,Renata Żochowska
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:117: 105550-105550 被引量:27
标识
DOI:10.1016/j.engappai.2022.105550
摘要

In this article, we propose a new method for OD (Origin–Destination)​ matrix prediction based on traffic data using deep learning. The input values of the developed model were determined based on data on the structure of the road network, origin and destination points of trips, as well as data on traffic intensity on road network sections recorded by video-sensing devices. The advantage of the method is that the complex process of data acquisition and processing is not required for the estimation and prediction of the matrix. Historical data and the iterative method of estimating a prior OD matrix were used only to generate training sequences for the neural network. The proposed method using deep learning neural networks with the long short-term memory (LSTM) or autoencoders layers (DLNa — deep learning networks with autoencoders) is characterized by relatively high accuracy and resistance to temporary missing data from several measurement points located in the urban road network. The case study was conducted for a network of a medium-sized city in Poland. The results show (average MAPE = 7.18% (LSTM), 6.80% (DLNa)) that the proposed method can have a practical implementation in real-time dynamic traffic assignment (DTA) systems for ITS applications. The proposed method of short-term forecasting the OD matrix does not require questionnaire research or detailed information on spatial development. Therefore, it is not as expensive and time-consuming as the methods based on these data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DQQ完成签到,获得积分10
刚刚
刚刚
负责的煎饼完成签到,获得积分10
刚刚
1秒前
科研小助发布了新的文献求助10
2秒前
大气元彤发布了新的文献求助10
3秒前
3秒前
岳岳岳发布了新的文献求助10
3秒前
nn完成签到,获得积分10
3秒前
strategy完成签到,获得积分10
3秒前
情怀应助haierke采纳,获得10
3秒前
充电宝应助nanana采纳,获得10
3秒前
4秒前
4秒前
杨发帅发布了新的文献求助10
4秒前
NexusExplorer应助YXY采纳,获得30
4秒前
犹豫小蝴蝶完成签到,获得积分10
4秒前
4秒前
彭于晏应助孤独秋翠采纳,获得10
4秒前
绘梨衣发布了新的文献求助10
5秒前
浅蓝色候鸟完成签到,获得积分10
5秒前
6秒前
李子发布了新的文献求助10
6秒前
小二郎应助那英东采纳,获得10
7秒前
7秒前
张发胜发布了新的文献求助10
7秒前
星辰大海应助清脆的代芹采纳,获得10
7秒前
华仔应助xh采纳,获得10
7秒前
7秒前
无辜的忘幽完成签到,获得积分10
8秒前
鬼火完成签到,获得积分10
8秒前
FashionBoy应助lemon采纳,获得10
9秒前
斯寜应助guard采纳,获得10
9秒前
知行完成签到,获得积分10
9秒前
科研通AI2S应助liar采纳,获得10
9秒前
strategy发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
hxr完成签到 ,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001525
求助须知:如何正确求助?哪些是违规求助? 4246659
关于积分的说明 13230789
捐赠科研通 4045478
什么是DOI,文献DOI怎么找? 2213078
邀请新用户注册赠送积分活动 1223305
关于科研通互助平台的介绍 1143569