亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ultra-broadband natural frequency using automatic resonance tuning of energy harvester and deep learning algorithms

宽带 能量(信号处理) 共振(粒子物理) 固有频率 算法 计算机科学 自然(考古学) 人工智能 声学 工程类 电子工程 物理 电信 振动 地理 粒子物理学 考古 量子力学
作者
Sallam A. Kouritem,Wael A. Altabey
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:272: 116332-116332 被引量:3
标识
DOI:10.1016/j.enconman.2022.116332
摘要

• Automatic resonance tuning (ART) harvester of two clamped piezoelectric beams is proposed. • Optimization COMSOL module is employed to optimize the frequency range. • The proposed ART design adjusts its natural frequency in range (27–137 Hz). • A novel CNN is trained and tested with FEM results of the harvester. • Predict harvester outputs not evaluated numerically using FEM. Previous broadband energy harvester techniques met many challenges like output power with a sharp peak, small enhancement in bandwidth, and large dimensions and weights. This paper introduces the Automatic Resonance Tuning (ART) technique of two piezoelectric beams to manage these challenges. The energy harvester of two clamped beams automatically adapts their natural frequencies corresponding to the ambient vibration using (sliding masses over the beams). The optimization using COMSOL was conducted to determine the frequency ranges of the low-frequency beam and high-frequency beam and maximize the output power. The bandwidth of the optimized ART harvester is broadened from 27 to 137 H z , ultra-broad bandwidth ( 110 H z ). Our Finite Element Method (FEM) results were validated with experimental results that exhibited excellent convergence. Usually, the dataset of voltage and power is collected by the FEM. Voltages and power evaluated using FEM for some positions are used as the convolutional neural network (CNN) input. CNN predicts the most of masses' positions over the harvester due to the complexity of repetition implementation FEM in several positions. Then, the CNNs are trained for new wide masses position prediction. The mean square error (MSE) of the training dataset is 2.5601 × 10 - 7 μ w and the performance of the CNN training is 97.62 % accuracy ( P % ), 95.38 % regression rate ( R % ), and 93.78 % F-score ( F % ), at epoch 1000 , which shows the effectiveness of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
9秒前
13秒前
17秒前
22秒前
在水一方应助科研通管家采纳,获得10
25秒前
qrwyqjbsd应助科研通管家采纳,获得10
25秒前
32秒前
36秒前
41秒前
armpit完成签到,获得积分10
45秒前
47秒前
51秒前
COMET发布了新的文献求助30
52秒前
LiS完成签到,获得积分10
1分钟前
阿柴发布了新的文献求助10
1分钟前
慕青应助失眠的煎饼采纳,获得10
1分钟前
归尘应助lll采纳,获得30
1分钟前
1分钟前
研友_VZG7GZ应助COMET采纳,获得10
1分钟前
1分钟前
彭于晏应助阿柴采纳,获得10
1分钟前
1分钟前
有人应助友好的一兰1111采纳,获得10
1分钟前
Owen应助友好的一兰1111采纳,获得30
1分钟前
IV完成签到,获得积分10
1分钟前
2分钟前
2分钟前
Orange应助wxxxxxxxxxx采纳,获得10
2分钟前
2分钟前
LeiYuanfang发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
dormraider完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3466835
求助须知:如何正确求助?哪些是违规求助? 3059635
关于积分的说明 9067253
捐赠科研通 2750111
什么是DOI,文献DOI怎么找? 1509039
科研通“疑难数据库(出版商)”最低求助积分说明 697124
邀请新用户注册赠送积分活动 696896