亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Ultra-broadband natural frequency using automatic resonance tuning of energy harvester and deep learning algorithms

宽带 能量(信号处理) 共振(粒子物理) 固有频率 算法 计算机科学 自然(考古学) 人工智能 声学 工程类 电子工程 物理 电信 振动 粒子物理学 考古 历史 量子力学
作者
Sallam A. Kouritem,Wael A. Altabey
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:272: 116332-116332 被引量:15
标识
DOI:10.1016/j.enconman.2022.116332
摘要

• Automatic resonance tuning (ART) harvester of two clamped piezoelectric beams is proposed. • Optimization COMSOL module is employed to optimize the frequency range. • The proposed ART design adjusts its natural frequency in range (27–137 Hz). • A novel CNN is trained and tested with FEM results of the harvester. • Predict harvester outputs not evaluated numerically using FEM. Previous broadband energy harvester techniques met many challenges like output power with a sharp peak, small enhancement in bandwidth, and large dimensions and weights. This paper introduces the Automatic Resonance Tuning (ART) technique of two piezoelectric beams to manage these challenges. The energy harvester of two clamped beams automatically adapts their natural frequencies corresponding to the ambient vibration using (sliding masses over the beams). The optimization using COMSOL was conducted to determine the frequency ranges of the low-frequency beam and high-frequency beam and maximize the output power. The bandwidth of the optimized ART harvester is broadened from 27 to 137 H z , ultra-broad bandwidth ( 110 H z ). Our Finite Element Method (FEM) results were validated with experimental results that exhibited excellent convergence. Usually, the dataset of voltage and power is collected by the FEM. Voltages and power evaluated using FEM for some positions are used as the convolutional neural network (CNN) input. CNN predicts the most of masses' positions over the harvester due to the complexity of repetition implementation FEM in several positions. Then, the CNNs are trained for new wide masses position prediction. The mean square error (MSE) of the training dataset is 2.5601 × 10 - 7 μ w and the performance of the CNN training is 97.62 % accuracy ( P % ), 95.38 % regression rate ( R % ), and 93.78 % F-score ( F % ), at epoch 1000 , which shows the effectiveness of the proposed approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
13秒前
所所应助科研通管家采纳,获得10
26秒前
joanna完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
33秒前
43秒前
52秒前
1分钟前
大方的黑猫完成签到,获得积分10
1分钟前
研友_Lk9Y9Z发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
研友_Lk9Y9Z完成签到,获得积分10
1分钟前
顺顺完成签到 ,获得积分10
2分钟前
outlast完成签到,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
CHRIS发布了新的文献求助10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
烟花应助科研通管家采纳,获得30
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
小雨点完成签到 ,获得积分10
4分钟前
CHRIS完成签到,获得积分10
4分钟前
滕皓轩完成签到 ,获得积分20
4分钟前
比比谁的速度快应助swayqur采纳,获得30
5分钟前
SciGPT应助jinoir采纳,获得10
5分钟前
5分钟前
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015140
求助须知:如何正确求助?哪些是违规求助? 3555113
关于积分的说明 11317861
捐赠科研通 3288577
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983