Network distribution and sentiment interaction: Information diffusion mechanisms between social bots and human users on social media

社会化媒体 计算机科学 可靠性 社会网络分析 情绪分析 社交网络(社会语言学) 舆论 社交媒体分析 互联网隐私 心理学 数据科学 万维网 人工智能 政治学 政治 法学
作者
Meng Cai,Han Luo,Xiao Meng,Ying Cui,Wei Wang
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:60 (2): 103197-103197 被引量:44
标识
DOI:10.1016/j.ipm.2022.103197
摘要

When public health emergencies occur, a large amount of low-credibility information is widely disseminated by social bots, and public sentiment is easily manipulated by social bots, which may pose a potential threat to the public opinion ecology of social media. Therefore, exploring how social bots affect the mechanism of information diffusion in social networks is a key strategy for network governance. This study combines machine learning methods and causal regression methods to explore how social bots influence information diffusion in social networks with theoretical support. Specifically, combining stakeholder perspective and emotional contagion theory, we proposed several questions and hypotheses to investigate the influence of social bots. Then, the study obtained 144,314 pieces of public opinion data related to COVID-19 in J city from March 1, 2022, to April 18, 2022, on Weibo, and selected 185,782 pieces of data related to the outbreak of COVID-19 in X city from December 9, 2021, to January 10, 2022, as supplement and verification. A comparative analysis of different data sets revealed the following findings. Firstly, through the STM topic model, it is found that some topics posted by social bots are significantly different from those posted by humans, and social bots play an important role in certain topics. Secondly, based on regression analysis, the study found that social bots tend to transmit information with negative sentiments more than positive sentiments. Thirdly, the study verifies the specific distribution of social bots in sentimental transmission through network analysis and finds that social bots are weaker than human users in the ability to spread negative sentiments. Finally, the Granger causality test is used to confirm that the sentiments of humans and bots can predict each other in time series. The results provide practical suggestions for emergency management under sudden public opinion and provide a useful reference for the identification and analysis of social bots, which is conducive to the maintenance of network security and the stability of social order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
火星上含海完成签到,获得积分10
3秒前
小马甲应助张雯思采纳,获得10
7秒前
41应助张雯思采纳,获得10
7秒前
李健的粉丝团团长应助123采纳,获得10
7秒前
孙燕应助张雯思采纳,获得10
7秒前
打打应助张雯思采纳,获得10
7秒前
情怀应助张雯思采纳,获得10
7秒前
孙燕应助张雯思采纳,获得10
7秒前
Hello应助张雯思采纳,获得10
7秒前
搜集达人应助张雯思采纳,获得10
7秒前
赘婿应助张雯思采纳,获得10
7秒前
今后应助张雯思采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
麋鹿完成签到,获得积分20
8秒前
赵子完成签到,获得积分10
11秒前
英姑应助会飞的鱼采纳,获得10
12秒前
15秒前
FashionBoy应助勤恳化蛹采纳,获得10
16秒前
18秒前
平淡小白菜完成签到,获得积分10
20秒前
lzx发布了新的文献求助10
21秒前
Jun发布了新的文献求助10
21秒前
隐形曼青应助搞怪的紫易采纳,获得10
22秒前
23秒前
xxddw发布了新的文献求助10
24秒前
大反应釜发布了新的文献求助20
28秒前
123发布了新的文献求助10
28秒前
hugeyoung完成签到,获得积分10
31秒前
31秒前
耳百完成签到,获得积分10
32秒前
34秒前
35秒前
36秒前
37秒前
37秒前
CR7应助越啊采纳,获得20
38秒前
李健应助123采纳,获得10
39秒前
Jun完成签到,获得积分10
40秒前
大反应釜发布了新的文献求助10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989444
求助须知:如何正确求助?哪些是违规求助? 3531531
关于积分的说明 11254250
捐赠科研通 3270191
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174