Network distribution and sentiment interaction: Information diffusion mechanisms between social bots and human users on social media

社会化媒体 计算机科学 可靠性 社会网络分析 情绪分析 社交网络(社会语言学) 舆论 社会影响力 互联网隐私 心理学 万维网 人工智能 社会心理学 政治学 政治 法学
作者
Meng Cai,Han Luo,Xiao Meng,Ying Cui,Wei Wang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (2): 103197-103197 被引量:24
标识
DOI:10.1016/j.ipm.2022.103197
摘要

When public health emergencies occur, a large amount of low-credibility information is widely disseminated by social bots, and public sentiment is easily manipulated by social bots, which may pose a potential threat to the public opinion ecology of social media. Therefore, exploring how social bots affect the mechanism of information diffusion in social networks is a key strategy for network governance. This study combines machine learning methods and causal regression methods to explore how social bots influence information diffusion in social networks with theoretical support. Specifically, combining stakeholder perspective and emotional contagion theory, we proposed several questions and hypotheses to investigate the influence of social bots. Then, the study obtained 144,314 pieces of public opinion data related to COVID-19 in J city from March 1, 2022, to April 18, 2022, on Weibo, and selected 185,782 pieces of data related to the outbreak of COVID-19 in X city from December 9, 2021, to January 10, 2022, as supplement and verification. A comparative analysis of different data sets revealed the following findings. Firstly, through the STM topic model, it is found that some topics posted by social bots are significantly different from those posted by humans, and social bots play an important role in certain topics. Secondly, based on regression analysis, the study found that social bots tend to transmit information with negative sentiments more than positive sentiments. Thirdly, the study verifies the specific distribution of social bots in sentimental transmission through network analysis and finds that social bots are weaker than human users in the ability to spread negative sentiments. Finally, the Granger causality test is used to confirm that the sentiments of humans and bots can predict each other in time series. The results provide practical suggestions for emergency management under sudden public opinion and provide a useful reference for the identification and analysis of social bots, which is conducive to the maintenance of network security and the stability of social order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
813发布了新的文献求助30
3秒前
日出完成签到,获得积分10
3秒前
NoGtime发布了新的文献求助10
7秒前
自由的中蓝完成签到 ,获得积分10
8秒前
qq完成签到,获得积分10
8秒前
yyy111发布了新的文献求助10
8秒前
Ava应助明亮的墨镜采纳,获得10
9秒前
123完成签到,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
yyymmma应助科研通管家采纳,获得10
11秒前
paparazzi221应助科研通管家采纳,获得50
11秒前
扎心应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
隐形曼青应助科研通管家采纳,获得10
11秒前
paparazzi221应助科研通管家采纳,获得50
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
不配.应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得30
11秒前
11秒前
搜集达人应助NIHAO采纳,获得10
12秒前
脑洞疼应助李lll采纳,获得10
12秒前
我的名字是山脉完成签到,获得积分10
14秒前
MMM完成签到 ,获得积分10
15秒前
CipherSage应助W查查采纳,获得10
15秒前
NoGtime完成签到,获得积分10
17秒前
瞿寒发布了新的文献求助30
18秒前
19秒前
西原的橙果完成签到,获得积分10
19秒前
guoyunlong完成签到,获得积分10
22秒前
chenchen完成签到 ,获得积分10
23秒前
Orange应助813采纳,获得10
23秒前
24秒前
直率千山发布了新的文献求助10
24秒前
苏夏完成签到 ,获得积分10
24秒前
yu发布了新的文献求助10
26秒前
27秒前
小白完成签到,获得积分10
27秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140580
求助须知:如何正确求助?哪些是违规求助? 2791382
关于积分的说明 7798832
捐赠科研通 2447736
什么是DOI,文献DOI怎么找? 1302029
科研通“疑难数据库(出版商)”最低求助积分说明 626402
版权声明 601194