已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Network distribution and sentiment interaction: Information diffusion mechanisms between social bots and human users on social media

社会化媒体 计算机科学 可靠性 社会网络分析 情绪分析 社交网络(社会语言学) 舆论 社交媒体分析 互联网隐私 心理学 数据科学 万维网 人工智能 政治学 政治 法学
作者
Meng Cai,Han Luo,Xiao Meng,Ying Cui,Wei Wang
出处
期刊:Information Processing and Management [Elsevier]
卷期号:60 (2): 103197-103197 被引量:71
标识
DOI:10.1016/j.ipm.2022.103197
摘要

When public health emergencies occur, a large amount of low-credibility information is widely disseminated by social bots, and public sentiment is easily manipulated by social bots, which may pose a potential threat to the public opinion ecology of social media. Therefore, exploring how social bots affect the mechanism of information diffusion in social networks is a key strategy for network governance. This study combines machine learning methods and causal regression methods to explore how social bots influence information diffusion in social networks with theoretical support. Specifically, combining stakeholder perspective and emotional contagion theory, we proposed several questions and hypotheses to investigate the influence of social bots. Then, the study obtained 144,314 pieces of public opinion data related to COVID-19 in J city from March 1, 2022, to April 18, 2022, on Weibo, and selected 185,782 pieces of data related to the outbreak of COVID-19 in X city from December 9, 2021, to January 10, 2022, as supplement and verification. A comparative analysis of different data sets revealed the following findings. Firstly, through the STM topic model, it is found that some topics posted by social bots are significantly different from those posted by humans, and social bots play an important role in certain topics. Secondly, based on regression analysis, the study found that social bots tend to transmit information with negative sentiments more than positive sentiments. Thirdly, the study verifies the specific distribution of social bots in sentimental transmission through network analysis and finds that social bots are weaker than human users in the ability to spread negative sentiments. Finally, the Granger causality test is used to confirm that the sentiments of humans and bots can predict each other in time series. The results provide practical suggestions for emergency management under sudden public opinion and provide a useful reference for the identification and analysis of social bots, which is conducive to the maintenance of network security and the stability of social order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
f1ame发布了新的文献求助10
1秒前
清爽的凌晴完成签到 ,获得积分10
4秒前
amengptsd完成签到,获得积分10
4秒前
科研通AI6应助gtgyh采纳,获得10
4秒前
找文献完成签到 ,获得积分10
5秒前
复杂海豚完成签到 ,获得积分10
8秒前
知知完成签到 ,获得积分10
9秒前
Bressanone发布了新的文献求助30
10秒前
就爱吃抹茶完成签到 ,获得积分10
12秒前
14秒前
LG完成签到 ,获得积分10
18秒前
Pauline完成签到 ,获得积分10
22秒前
默默的诗云关注了科研通微信公众号
22秒前
23秒前
东都哈士奇完成签到,获得积分10
26秒前
28秒前
28秒前
一只沐完成签到,获得积分10
30秒前
33秒前
34秒前
善学以致用应助sherry采纳,获得10
35秒前
JamesPei应助丰富的乐瑶采纳,获得10
35秒前
王吉萍完成签到 ,获得积分10
37秒前
37秒前
39秒前
40秒前
刘观海完成签到 ,获得积分10
40秒前
41秒前
44秒前
46秒前
不能随便完成签到,获得积分10
50秒前
sherry发布了新的文献求助10
53秒前
跳跃的鹏飞完成签到 ,获得积分0
53秒前
58秒前
JamesPei应助sherry采纳,获得10
58秒前
111发布了新的文献求助10
58秒前
蜡笔小新完成签到,获得积分20
1分钟前
Jasper应助MrZhZh采纳,获得10
1分钟前
1分钟前
丰富的冰烟完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522443
求助须知:如何正确求助?哪些是违规求助? 4613434
关于积分的说明 14538832
捐赠科研通 4551149
什么是DOI,文献DOI怎么找? 2494023
邀请新用户注册赠送积分活动 1475048
关于科研通互助平台的介绍 1446425