Network distribution and sentiment interaction: Information diffusion mechanisms between social bots and human users on social media

社会化媒体 计算机科学 可靠性 社会网络分析 情绪分析 社交网络(社会语言学) 舆论 社交媒体分析 互联网隐私 心理学 数据科学 万维网 人工智能 政治学 政治 法学
作者
Meng Cai,Han Luo,Xiao Meng,Ying Cui,Wei Wang
出处
期刊:Information Processing and Management [Elsevier BV]
卷期号:60 (2): 103197-103197 被引量:44
标识
DOI:10.1016/j.ipm.2022.103197
摘要

When public health emergencies occur, a large amount of low-credibility information is widely disseminated by social bots, and public sentiment is easily manipulated by social bots, which may pose a potential threat to the public opinion ecology of social media. Therefore, exploring how social bots affect the mechanism of information diffusion in social networks is a key strategy for network governance. This study combines machine learning methods and causal regression methods to explore how social bots influence information diffusion in social networks with theoretical support. Specifically, combining stakeholder perspective and emotional contagion theory, we proposed several questions and hypotheses to investigate the influence of social bots. Then, the study obtained 144,314 pieces of public opinion data related to COVID-19 in J city from March 1, 2022, to April 18, 2022, on Weibo, and selected 185,782 pieces of data related to the outbreak of COVID-19 in X city from December 9, 2021, to January 10, 2022, as supplement and verification. A comparative analysis of different data sets revealed the following findings. Firstly, through the STM topic model, it is found that some topics posted by social bots are significantly different from those posted by humans, and social bots play an important role in certain topics. Secondly, based on regression analysis, the study found that social bots tend to transmit information with negative sentiments more than positive sentiments. Thirdly, the study verifies the specific distribution of social bots in sentimental transmission through network analysis and finds that social bots are weaker than human users in the ability to spread negative sentiments. Finally, the Granger causality test is used to confirm that the sentiments of humans and bots can predict each other in time series. The results provide practical suggestions for emergency management under sudden public opinion and provide a useful reference for the identification and analysis of social bots, which is conducive to the maintenance of network security and the stability of social order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月亮褪色了完成签到 ,获得积分20
3秒前
萱棚完成签到 ,获得积分10
3秒前
4秒前
Cao完成签到 ,获得积分10
4秒前
ENG完成签到,获得积分10
6秒前
alick完成签到,获得积分10
8秒前
刘刘完成签到,获得积分10
9秒前
Tom完成签到,获得积分10
10秒前
Villanellel发布了新的文献求助10
11秒前
程艳完成签到 ,获得积分10
12秒前
MINGHUI完成签到,获得积分10
13秒前
13秒前
子车半烟完成签到,获得积分10
13秒前
15秒前
淳于安筠完成签到,获得积分10
15秒前
雨晴完成签到,获得积分10
18秒前
jbq发布了新的文献求助10
18秒前
joshar完成签到,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
21秒前
blueblue完成签到,获得积分10
23秒前
落后秋烟完成签到,获得积分10
25秒前
大橙子发布了新的文献求助10
26秒前
LMY完成签到 ,获得积分10
26秒前
Betty完成签到 ,获得积分10
26秒前
NexusExplorer应助jbq采纳,获得10
27秒前
渔渔完成签到 ,获得积分10
27秒前
28秒前
Tangyartie完成签到 ,获得积分10
28秒前
skbkbe完成签到 ,获得积分10
29秒前
陈俊雷完成签到 ,获得积分0
30秒前
阿苗完成签到,获得积分10
31秒前
神勇的天问完成签到 ,获得积分10
32秒前
32秒前
advance完成签到,获得积分10
32秒前
李cc发布了新的文献求助10
33秒前
蒋念寒发布了新的文献求助10
34秒前
Sindy完成签到,获得积分10
34秒前
彭于晏应助HH采纳,获得30
36秒前
36秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038184
求助须知:如何正确求助?哪些是违规求助? 3575908
关于积分的说明 11373872
捐赠科研通 3305715
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022