Prediction of axillary lymph node pathological complete response to neoadjuvant therapy using nomogram and machine learning methods

列线图 医学 接收机工作特性 置信区间 乳腺癌 新辅助治疗 优势比 曲线下面积 淋巴结 逻辑回归 T级 核医学 放射科 内科学 癌症
作者
Tianyang Zhou,Mengting Yang,Mijia Wang,Linlin Han,Hong Chen,Nan Wu,Shui Wang,Xinyi Wang,Yuting Zhang,Di Cui,Feng Jin,Pan Qin,Jia Wang
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:12
标识
DOI:10.3389/fonc.2022.1046039
摘要

To determine the feasibility of predicting the rate of an axillary lymph node pathological complete response (apCR) using nomogram and machine learning methods.A total of 247 patients with early breast cancer (eBC), who underwent neoadjuvant therapy (NAT) were included retrospectively. We compared pre- and post-NAT ultrasound information and calculated the maximum diameter change of the primary lesion (MDCPL): [(pre-NAT maximum diameter of primary lesion - post-NAT maximum diameter of preoperative primary lesion)/pre-NAT maximum diameter of primary lesion] and described the lymph node score (LNS) (1): unclear border (2), irregular morphology (3), absence of hilum (4), visible vascularity (5), cortical thickness, and (6) aspect ratio <2. Each description counted as 1 point. Logistic regression analyses were used to assess apCR independent predictors to create nomogram. The area under the curve (AUC) of the receiver operating characteristic curve as well as calibration curves were employed to assess the nomogram's performance. In machine learning, data were trained and validated by random forest (RF) following Pycharm software and five-fold cross-validation analysis.The mean age of enrolled patients was 50.4 ± 10.2 years. MDCPL (odds ratio [OR], 1.013; 95% confidence interval [CI], 1.002-1.024; p=0.018), LNS changes (pre-NAT LNS - post-NAT LNS; OR, 2.790; 95% CI, 1.190-6.544; p=0.018), N stage (OR, 0.496; 95% CI, 0.269-0.915; p=0.025), and HER2 status (OR, 2.244; 95% CI, 1.147-4.392; p=0.018) were independent predictors of apCR. The AUCs of the nomogram were 0.74 (95% CI, 0.68-0.81) and 0.76 (95% CI, 0.63-0.90) for training and validation sets, respectively. In RF model, the maximum diameter of the primary lesion, axillary lymph node, and LNS in each cycle, estrogen receptor status, progesterone receptor status, HER2, Ki67, and T and N stages were included in the training set. The final validation set had an AUC value of 0.85 (95% CI, 0.74-0.87).Both nomogram and machine learning methods can predict apCR well. Nomogram is simple and practical, and shows high operability. Machine learning makes better use of a patient's clinicopathological information. These prediction models can assist surgeons in deciding on a reasonable strategy for axillary surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自觉的凌青完成签到,获得积分10
1秒前
1秒前
1秒前
一定要顺利毕业呀完成签到,获得积分10
2秒前
山河发布了新的文献求助10
2秒前
Noneone110完成签到,获得积分10
2秒前
这个郭我背了完成签到,获得积分10
2秒前
朝阳完成签到,获得积分10
3秒前
3秒前
SSS关注了科研通微信公众号
4秒前
浑语堂发布了新的文献求助10
4秒前
4秒前
kagura完成签到,获得积分10
5秒前
鹿见林发布了新的文献求助10
5秒前
lishan完成签到,获得积分10
7秒前
喜悦的鬼神完成签到 ,获得积分10
7秒前
仿若浮云完成签到,获得积分10
7秒前
jin完成签到,获得积分10
8秒前
丘比特应助称心太阳采纳,获得10
9秒前
10秒前
10秒前
10秒前
水泥酱发布了新的文献求助10
11秒前
烟花应助稳重的秋天采纳,获得10
12秒前
ohuo完成签到,获得积分10
12秒前
14秒前
14秒前
14秒前
15秒前
16秒前
16秒前
香蕉觅云应助鹿见林采纳,获得10
16秒前
小二郎应助鹿见林采纳,获得10
16秒前
星辰大海应助ll200207采纳,获得10
17秒前
CodeCraft应助科研进化中采纳,获得10
18秒前
18秒前
吉祥如意完成签到,获得积分10
19秒前
小鹿5460发布了新的文献求助10
20秒前
20秒前
yyyyyyyyr完成签到,获得积分20
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652029
求助须知:如何正确求助?哪些是违规求助? 3216197
关于积分的说明 9711172
捐赠科研通 2924058
什么是DOI,文献DOI怎么找? 1601466
邀请新用户注册赠送积分活动 754190
科研通“疑难数据库(出版商)”最低求助积分说明 732987