Radiomic model to predict the expression of PD-1 and overall survival of patients with ovarian cancer

接收机工作特性 比例危险模型 肿瘤科 医学 逻辑回归 生存分析 内科学
作者
Lanmei Gao,Wenying Jiang,Qiuyuan Yue,Rongping Ye,Yueming Li,Jinsheng Hong,Mingwei Zhang
出处
期刊:International Immunopharmacology [Elsevier]
卷期号:113: 109335-109335 被引量:17
标识
DOI:10.1016/j.intimp.2022.109335
摘要

Programmed cell death 1 (PD-1), encoded by programmed cell death protein 1 (PDCD1), is widely investigated in clinical trials. We aimed to develop a radiomic model to discriminate its expression levels patients with ovarian cancer (OC) and explore its prognostic value.Computed tomography (CT) images with the corresponding sequencing data and clinicopathological features were used. The volumes of interest were manually delineated. After extraction and normalization, the radiomic features were screened using repeat least absolute shrinkage and selection operator. A radiomic model for PD-1 prediction, radiomic score (rad_score), was developed using logistic regression and validated via internal 5-fold cross-validation. The Kaplan-Meier curves, COX proportional hazards model, and landmark analysis were used for survival analysis.The mRNA level of PDCD1 significantly affects the overall survival (OS) of OC patients. The rad_score for PDCD1 prediction was based on four features and was significantly correlated with other genes involved in T-cell exhaustion and immune checkpoint molecules. The areas under the receiver operating characteristic curves reached 0.810 and 0.772 in the training and validation datasets, respectively. The calibration curves and decision curve analysis proved the model's fitness and clinical benefits. Patients with higher rad_score had poorer OS (P < 0.001, 0.031, 0.014, 0.01, and < 0.001, after landmark of 12 months, before and after landmark of 36 months, and before and after landmark of 60 months, respectively).The radiomic signature from CT images can discriminate the PD-1 expression status and OC prognosis, which is correlated with T-cell exhaustion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunw发布了新的文献求助10
刚刚
llg发布了新的文献求助10
刚刚
脑洞疼应助jimmy采纳,获得10
刚刚
酱紫完成签到,获得积分10
1秒前
Gin完成签到 ,获得积分10
1秒前
大模型应助111采纳,获得10
1秒前
Celeste完成签到,获得积分10
2秒前
机灵青筠完成签到,获得积分10
2秒前
xuxiaoyan发布了新的文献求助10
2秒前
甜甜元绿发布了新的文献求助10
3秒前
李爱国应助爱听歌的忆翠采纳,获得10
4秒前
木村拓哉发布了新的文献求助10
5秒前
TORGO完成签到 ,获得积分10
5秒前
李爱国应助慢慢采纳,获得10
6秒前
jonghuang发布了新的文献求助10
6秒前
可爱的函函应助llg采纳,获得10
6秒前
康桥完成签到,获得积分10
7秒前
Ice_zhao完成签到,获得积分10
8秒前
9秒前
李天翔完成签到,获得积分10
10秒前
Jasper应助巨石朵拉采纳,获得10
10秒前
12秒前
13秒前
13秒前
123发布了新的文献求助10
14秒前
阿辉发布了新的文献求助10
14秒前
asjdia123关注了科研通微信公众号
14秒前
11完成签到 ,获得积分10
15秒前
明理念桃完成签到,获得积分10
15秒前
绵绵饲养手册完成签到,获得积分10
15秒前
甜甜的豆芽完成签到 ,获得积分10
15秒前
111发布了新的文献求助10
16秒前
16秒前
Owen应助求篇文章采纳,获得10
17秒前
葛子尧完成签到,获得积分10
17秒前
17秒前
17秒前
英勇的听寒完成签到,获得积分10
18秒前
18秒前
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156157
求助须知:如何正确求助?哪些是违规求助? 2807647
关于积分的说明 7873898
捐赠科研通 2465881
什么是DOI,文献DOI怎么找? 1312484
科研通“疑难数据库(出版商)”最低求助积分说明 630109
版权声明 601905