Radiomic model to predict the expression of PD-1 and overall survival of patients with ovarian cancer

接收机工作特性 比例危险模型 肿瘤科 医学 逻辑回归 生存分析 内科学
作者
Lanmei Gao,Wenying Jiang,Qiuyuan Yue,Rongping Ye,Yueming Li,Jinsheng Hong,Mingwei Zhang
出处
期刊:International Immunopharmacology [Elsevier BV]
卷期号:113: 109335-109335 被引量:22
标识
DOI:10.1016/j.intimp.2022.109335
摘要

Programmed cell death 1 (PD-1), encoded by programmed cell death protein 1 (PDCD1), is widely investigated in clinical trials. We aimed to develop a radiomic model to discriminate its expression levels patients with ovarian cancer (OC) and explore its prognostic value.Computed tomography (CT) images with the corresponding sequencing data and clinicopathological features were used. The volumes of interest were manually delineated. After extraction and normalization, the radiomic features were screened using repeat least absolute shrinkage and selection operator. A radiomic model for PD-1 prediction, radiomic score (rad_score), was developed using logistic regression and validated via internal 5-fold cross-validation. The Kaplan-Meier curves, COX proportional hazards model, and landmark analysis were used for survival analysis.The mRNA level of PDCD1 significantly affects the overall survival (OS) of OC patients. The rad_score for PDCD1 prediction was based on four features and was significantly correlated with other genes involved in T-cell exhaustion and immune checkpoint molecules. The areas under the receiver operating characteristic curves reached 0.810 and 0.772 in the training and validation datasets, respectively. The calibration curves and decision curve analysis proved the model's fitness and clinical benefits. Patients with higher rad_score had poorer OS (P < 0.001, 0.031, 0.014, 0.01, and < 0.001, after landmark of 12 months, before and after landmark of 36 months, and before and after landmark of 60 months, respectively).The radiomic signature from CT images can discriminate the PD-1 expression status and OC prognosis, which is correlated with T-cell exhaustion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wy.he应助kk采纳,获得10
刚刚
十二应助kk采纳,获得10
刚刚
Rondab应助kk采纳,获得10
刚刚
热心市民小红花应助kk采纳,获得10
刚刚
2秒前
标致的泥猴桃完成签到,获得积分10
2秒前
土豆泥完成签到 ,获得积分10
2秒前
方块块发布了新的文献求助10
2秒前
飞竹天寻完成签到,获得积分20
2秒前
gi发布了新的文献求助10
3秒前
KatzeBaliey完成签到,获得积分10
3秒前
Pooh完成签到,获得积分10
5秒前
飞竹天寻发布了新的文献求助10
5秒前
多肽专家完成签到,获得积分10
6秒前
6秒前
Jenny发布了新的文献求助10
7秒前
小虎应助qian采纳,获得30
10秒前
方块块完成签到,获得积分10
10秒前
12秒前
王红发布了新的文献求助10
12秒前
橘子完成签到,获得积分10
12秒前
李青函完成签到,获得积分10
12秒前
顾矜应助Jenny采纳,获得10
14秒前
陈慧钦关注了科研通微信公众号
14秒前
优秀的山蝶完成签到,获得积分10
16秒前
热心市民小红花应助gi采纳,获得10
16秒前
领导范儿应助哈哈公子25采纳,获得10
17秒前
vicky完成签到 ,获得积分10
18秒前
19秒前
kk完成签到,获得积分10
19秒前
19秒前
呵呵完成签到,获得积分10
21秒前
22秒前
22秒前
机智傀斗完成签到,获得积分10
22秒前
22秒前
哈哈公子25完成签到,获得积分10
22秒前
皇甫嵩发布了新的文献求助200
23秒前
23秒前
橘子完成签到 ,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966124
求助须知:如何正确求助?哪些是违规求助? 3511501
关于积分的说明 11158638
捐赠科研通 3246146
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324