Path tracking control of intelligent vehicles via a speed-adaptive MPC for a curved lane with varying curvature

控制理论(社会学) 前馈 卡西姆 曲率 控制器(灌溉) 模型预测控制 计算机科学 路径(计算) 航程(航空) 跟踪(教育) 跟踪误差 工程类 控制工程 数学 人工智能 控制(管理) 航空航天工程 程序设计语言 几何学 生物 教育学 心理学 农学
作者
Longxin Guan,Pingwei Liao,Aichun Wang,Lequan Shi,Chao Zhang,Xiaojian Wu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:238 (4): 802-824 被引量:12
标识
DOI:10.1177/09544070221133967
摘要

When driving on a curved lane with varying curvature, human drivers usually make a small range of longitudinal speed adjustments to maintain a yaw response that feels more stable. Taking this type of response as a reference, intelligent vehicles must also make adjustments to their longitudinal speed within a small range during the path tracking process with curvature changes. The current variable curvature path tracking algorithm using model predictive control (MPC) basically assumes that the vehicle moves at a constant speed, which does not match the small-range adjustment of the longitudinal speed and thereby affects the accuracy of path tracking. In this paper, considering the small range of speed variation in the path tracking process, the path and speed decoupling control in Frenet coordinates are used to replace the longitudinal-lateral-yaw complex coupling dynamics control. Meanwhile, considering the problem that the steady-state error of the MPC controller caused by curvature variation in the path tracking process cannot be eliminated, the adaptive weight control (AWC) and adaptive feedforward (AFF) models based on BP neural network (BPNN) data learning are designed to dynamically adjust the lateral error weight and feedforward factors of the MPC controller. As a result, a more accurate path tracking effect is achieved. Simulation results in the joint CarSim-Simulink environment show that the proposed algorithm significantly improves the adaptive capability of the linear MPC controller in response to time-varying conditions and has a higher tracking accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
demo完成签到,获得积分10
1秒前
橘栀完成签到,获得积分10
1秒前
3秒前
Owen应助难过的谷芹采纳,获得10
4秒前
4秒前
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
池洲应助科研通管家采纳,获得10
5秒前
6秒前
华仔应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
危机的阁应助科研通管家采纳,获得30
6秒前
子昂应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
池洲应助科研通管家采纳,获得10
6秒前
pluto应助科研通管家采纳,获得10
6秒前
华仔应助科研通管家采纳,获得10
6秒前
赘婿应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
危机的阁应助科研通管家采纳,获得30
7秒前
7秒前
子昂应助科研通管家采纳,获得10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
7秒前
pluto应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
7秒前
HOAN应助科研通管家采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
左丘以云完成签到,获得积分10
7秒前
危机的阁应助科研通管家采纳,获得30
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742261
求助须知:如何正确求助?哪些是违规求助? 5407364
关于积分的说明 15344547
捐赠科研通 4883713
什么是DOI,文献DOI怎么找? 2625203
邀请新用户注册赠送积分活动 1574062
关于科研通互助平台的介绍 1531044