Path tracking control of intelligent vehicles via a speed-adaptive MPC for a curved lane with varying curvature

控制理论(社会学) 前馈 卡西姆 曲率 控制器(灌溉) 模型预测控制 计算机科学 路径(计算) 航程(航空) 跟踪(教育) 跟踪误差 工程类 控制工程 数学 人工智能 控制(管理) 航空航天工程 程序设计语言 几何学 生物 教育学 心理学 农学
作者
Longxin Guan,Pingwei Liao,Aichun Wang,Lequan Shi,Chao Zhang,Xiaojian Wu
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering [SAGE]
卷期号:238 (4): 802-824 被引量:12
标识
DOI:10.1177/09544070221133967
摘要

When driving on a curved lane with varying curvature, human drivers usually make a small range of longitudinal speed adjustments to maintain a yaw response that feels more stable. Taking this type of response as a reference, intelligent vehicles must also make adjustments to their longitudinal speed within a small range during the path tracking process with curvature changes. The current variable curvature path tracking algorithm using model predictive control (MPC) basically assumes that the vehicle moves at a constant speed, which does not match the small-range adjustment of the longitudinal speed and thereby affects the accuracy of path tracking. In this paper, considering the small range of speed variation in the path tracking process, the path and speed decoupling control in Frenet coordinates are used to replace the longitudinal-lateral-yaw complex coupling dynamics control. Meanwhile, considering the problem that the steady-state error of the MPC controller caused by curvature variation in the path tracking process cannot be eliminated, the adaptive weight control (AWC) and adaptive feedforward (AFF) models based on BP neural network (BPNN) data learning are designed to dynamically adjust the lateral error weight and feedforward factors of the MPC controller. As a result, a more accurate path tracking effect is achieved. Simulation results in the joint CarSim-Simulink environment show that the proposed algorithm significantly improves the adaptive capability of the linear MPC controller in response to time-varying conditions and has a higher tracking accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lucky发布了新的文献求助10
1秒前
3秒前
6秒前
悦耳的雍完成签到,获得积分10
6秒前
you完成签到,获得积分10
6秒前
豆豆哥完成签到,获得积分10
7秒前
Xiaoab完成签到,获得积分10
7秒前
7秒前
7秒前
欢喜的大地完成签到 ,获得积分10
8秒前
pearlqi完成签到,获得积分10
9秒前
liujian发布了新的文献求助10
9秒前
珞珈山冲浪选手完成签到,获得积分10
10秒前
局内人发布了新的文献求助10
10秒前
10秒前
10秒前
子龙发布了新的文献求助10
11秒前
think1805完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
SN发布了新的文献求助10
13秒前
Dy完成签到,获得积分10
13秒前
pearlqi发布了新的文献求助30
13秒前
小敏完成签到,获得积分10
14秒前
瓜兮兮CYY发布了新的文献求助10
15秒前
迅速千愁完成签到 ,获得积分10
16秒前
善学以致用应助liujian采纳,获得10
18秒前
20秒前
小二郎应助think1805采纳,获得10
22秒前
吴昊东发布了新的文献求助10
23秒前
23秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
26秒前
GL发布了新的文献求助10
28秒前
30秒前
31秒前
32秒前
科研通AI6应助大胖采纳,获得30
32秒前
35秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405343
求助须知:如何正确求助?哪些是违规求助? 4523642
关于积分的说明 14094744
捐赠科研通 4437428
什么是DOI,文献DOI怎么找? 2435629
邀请新用户注册赠送积分活动 1427810
关于科研通互助平台的介绍 1406072