Nanoparticulate FeF2@C as a Li Battery Conversion Cathode

阴极 材料科学 电化学 阳极 化学工程 电解质 无定形固体 电池(电) 电导率 电极 化学 结晶学 功率(物理) 物理 工程类 物理化学 量子力学
作者
Bryan R. Wygant,Noah B. Schorr,Igor V. Kolesnichenko,Timothy N. Lambert
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:5 (11): 13346-13355 被引量:8
标识
DOI:10.1021/acsaem.2c01988
摘要

The high theoretical capacity (571 mAh/g) and energy density (1519 Wh/kg) of iron difluoride (FeF2) make it a promising conversion cathode material for use in Li-based batteries, provided inherent limitations related to material conductivity and reactivity are surmountable. In this work, we report a simple synthesis to produce crystalline FeF2 particles approximately 35 nm in diameter surrounded by a thin carbon shell (FeF2@C) and demonstrate its excellent performance as a cathode in Li metal batteries. Characterization of the FeF2@C shows that the C-shell is 2–3 nm thick and composed of amorphous conjugated carbon with a nitrogen content of 3.8%, largely in the form of pyridinic moieties. When paired with a Li metal anode, the FeF2@C composite cathodes exhibit excellent specific capacity and retention, 634 mAh/gFeF2@C after 50 cycles at C/20, compared to 234 mAh/gFeF2 when a cathode containing commercial FeF2 was used. The material also shows excellent rate performance and, at a 1C charge/discharge rate, demonstrates a capacity greater than that of common intercalation cathodes like LiFePO4. We attribute the performance of the FeF2@C to improved lithiation/delithiation behavior due to the nanoscale FeF2 particles, increased protection from chemical and electrochemical damage, improved conductivity and capacity granted by the C-shell, and additional capacity from the in situ formation of FeF3 during cycling. After electrochemical cycling, ex situ analysis of the FeF2@C material shows that while a roughly 2–8 nm cathode electrolyte interphase (CEI) forms on the surface of the particles, the underlying material retains its initial nanostructure and FeF2-characteristics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助优雅老六采纳,获得10
1秒前
李健的小迷弟应助David采纳,获得10
1秒前
k_1发布了新的文献求助10
1秒前
星辰大海应助知性的夏之采纳,获得10
2秒前
Mandy完成签到,获得积分10
2秒前
2秒前
香蕉觅云应助YUMI采纳,获得10
2秒前
水怪啊完成签到,获得积分10
4秒前
小米完成签到,获得积分10
5秒前
杨德凯完成签到,获得积分10
5秒前
6秒前
喈喈青鸟完成签到,获得积分10
8秒前
MoLing发布了新的文献求助10
8秒前
9秒前
Owen应助大气小土豆采纳,获得10
9秒前
10秒前
10秒前
香蕉觅云应助GKING采纳,获得10
10秒前
10秒前
11秒前
12秒前
上官若男应助愿景采纳,获得10
12秒前
七月流火给dawnfrf的求助进行了留言
13秒前
达分歧完成签到,获得积分10
13秒前
木可完成签到 ,获得积分10
13秒前
情怀应助王羲之采纳,获得10
13秒前
愉快若剑发布了新的文献求助150
14秒前
14秒前
YUMI发布了新的文献求助10
15秒前
15秒前
杨鑫怡发布了新的文献求助10
15秒前
16秒前
16秒前
扬帆远航完成签到 ,获得积分10
17秒前
深情安青应助闪闪万言采纳,获得10
18秒前
123发布了新的文献求助10
18秒前
一一应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633272
求助须知:如何正确求助?哪些是违规求助? 4728777
关于积分的说明 14985477
捐赠科研通 4791228
什么是DOI,文献DOI怎么找? 2558809
邀请新用户注册赠送积分活动 1519258
关于科研通互助平台的介绍 1479548