An Exploration of Pepino (Solanum muricatum) Flavor Compounds Using Machine Learning Combined with Metabolomics and Sensory Evaluation

甜蜜 风味 食品科学 代谢组学 品味 机器学习 化学 人工智能 生物技术 生物 计算机科学 色谱法
作者
Zhu Sun,Wei Zhao,Yaping Li,Cheng Si,Xuemei Sun,Qing Zhong,Shipeng Yang
出处
期刊:Foods [MDPI AG]
卷期号:11 (20): 3248-3248 被引量:8
标识
DOI:10.3390/foods11203248
摘要

Flavor is one of the most important characteristics that directly determines the popularity of a food. Moreover, the flavor of fruits is determined by the interaction of multiple metabolic components. Pepino, an emerging horticultural crop, is popular for its unique melon-like flavor. We analyzed metabolomics data from three different pepino growing regions in Haidong, Wuwei, and Jiuquan and counted the status of sweetness, acidity, flavor, and overall liking ratings of pepino fruit in these three regions by sensory panels. The metabolomics and flavor ratings were also integrated and analyzed using statistical and machine learning models, which in turn predicted the sensory panel ratings of consumers based on the chemical composition of the fruit. The results showed that pepino fruit produced in the Jiuquan region received the highest ratings in sweetness, flavor intensity, and liking, and the results with the highest contribution based on sensory evaluation showed that nucleotides and derivatives, phenolic acids, amino acids and derivatives, saccharides, and alcohols were rated in sweetness (74.40%), acidity (51.57%), flavor (56.41%), and likability (33.73%) dominated. We employed 14 machine learning strategies trained on the discovery samples to accurately predict the outcome of sweetness, sourness, flavor, and liking in the replication samples. The Radial Sigma SVM model predicted with better accuracy than the other machine learning models. Then we used the machine learning models to determine which metabolites influenced both pepino flavor and consumer preference. A total of 27 metabolites most important for pepino flavor attributes to distinguish pepino originating from three regions were screened. Substances such as N-acetylhistamine, arginine, and caffeic acid can enhance pepino's flavor intensity, and metabolites such as glycerol 3-phosphate, aconitic acid, and sucrose all acted as important variables in explaining the liking preference. While glycolic acid and orthophosphate inhibit sweetness and enhance sourness, sucrose has the opposite effect. Machine learning can identify the types of metabolites that influence fruit flavor by linking metabolomics of fruit with sensory evaluation among consumers, which conduces breeders to incorporate fruit flavor as a trait earlier in the breeding process, making it possible to select and release fruit with more flavor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小糊涂完成签到 ,获得积分10
刚刚
小西米完成签到 ,获得积分10
刚刚
李烛尘发布了新的文献求助10
2秒前
聚甲烯吡络烷酮完成签到,获得积分10
3秒前
阿雯姐发布了新的文献求助10
4秒前
5秒前
5秒前
tonyhuang完成签到,获得积分10
7秒前
ruyingxia完成签到,获得积分10
8秒前
Amor发布了新的文献求助10
9秒前
enoch完成签到 ,获得积分10
11秒前
11秒前
Lucas应助Yolo采纳,获得10
12秒前
TrucCSC应助迷路的煎蛋采纳,获得10
12秒前
Flicker完成签到 ,获得积分10
15秒前
慕青应助老实的孤丹采纳,获得10
15秒前
15秒前
19秒前
彭于晏应助Amor采纳,获得10
20秒前
24秒前
25秒前
Flicker发布了新的文献求助10
26秒前
搞怪曼柔完成签到,获得积分20
27秒前
颠覆乾坤发布了新的文献求助10
27秒前
大个应助NTMD采纳,获得10
29秒前
眯眯眼的宛白完成签到,获得积分10
31秒前
sci女工应助屾哥采纳,获得10
32秒前
32秒前
万能图书馆应助阿雯姐采纳,获得10
33秒前
丘比特应助郑思雨采纳,获得10
34秒前
34秒前
奋斗安莲完成签到,获得积分20
34秒前
35秒前
37秒前
大胆盼兰发布了新的文献求助10
38秒前
39秒前
小王好饿完成签到 ,获得积分10
40秒前
小6s发布了新的文献求助10
41秒前
42秒前
43秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171184
求助须知:如何正确求助?哪些是违规求助? 2822083
关于积分的说明 7937925
捐赠科研通 2482524
什么是DOI,文献DOI怎么找? 1322654
科研通“疑难数据库(出版商)”最低求助积分说明 633669
版权声明 602627