Wisdom from the crowd: Can recommender systems predict employee turnover and its destinations?

推荐系统 工作满意度 考试(生物学) 质量(理念) 计算机科学 构造(python库) 工作态度 工作表现 心理学 机器学习 社会心理学 生物 认识论 哲学 古生物学 程序设计语言
作者
Hanyi Min,Baojiang Yang,David G. Allen,Alicia A. Grandey,Mengqiao Liu
出处
期刊:Personnel Psychology [Wiley]
卷期号:77 (2): 475-496 被引量:5
标识
DOI:10.1111/peps.12551
摘要

Abstract Can algorithms that predict customer movie and shopping preferences also predict which employees are likely to leave and where they are likely to go, thus helping to retain talent? This study applies a type of machine learning (ML) technique, collaborative filtering (CF) recommender system algorithms, to investigate the comparison between satisfaction with the current job and potential satisfaction with job alternatives, which is inherent in theorizing about individual turnover decisions. The comparison of those anticipated ratings along with employee's current job satisfaction creates two operationalizations: the quantity of more desirable job alternatives and the quality (or extent of desirability) of job alternatives . To test the effectiveness of this novel approach, we applied recommender system algorithms to a longitudinal archival dataset of employees and had three main findings. First, the recommender system algorithms efficiently predicted job satisfaction based on just two sources of information (i.e., work history and job satisfaction in previous jobs), providing construct validity evidence for recommender systems. Second, both the quantity and the quality of more desirable job alternatives compared to the current job positively correlated with employees’ future turnover behavior. Finally, our CF recommender system algorithms predicted where employees moved to, and even more effectively if constraining the alternative jobs to the same occupation. We conclude with implications how recommender system algorithms can help scholars effectively test theoretical ideas and practitioners predict and reduce turnover.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘻嘻完成签到,获得积分10
2秒前
dan应助巴拉巴拉采纳,获得10
3秒前
mumumama1020关注了科研通微信公众号
3秒前
5秒前
晨曦发布了新的文献求助20
6秒前
一小时完成签到,获得积分10
6秒前
打打应助QYW采纳,获得30
7秒前
女青完成签到 ,获得积分10
8秒前
李爱国应助嘻嘻采纳,获得10
8秒前
zxy发布了新的文献求助10
9秒前
小谷发布了新的文献求助10
9秒前
qj完成签到,获得积分10
12秒前
想做哥哥的伞钯完成签到,获得积分10
12秒前
Li应助一小时采纳,获得20
12秒前
叽里呱啦完成签到 ,获得积分10
13秒前
我是老大应助调皮的蓝天采纳,获得10
13秒前
Bob完成签到,获得积分10
14秒前
蔡翌文完成签到 ,获得积分10
15秒前
烟花应助墨白白采纳,获得10
19秒前
红油曲奇完成签到,获得积分10
19秒前
19秒前
平常幼菱完成签到,获得积分10
22秒前
22秒前
烟花应助科研通管家采纳,获得10
25秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
Hello应助科研通管家采纳,获得10
25秒前
天天快乐应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
英姑应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
烟花应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
25秒前
我不是BOB应助科研通管家采纳,获得50
25秒前
汉堡包应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
汉堡包应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
27秒前
朴素雁凡发布了新的文献求助10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137423
求助须知:如何正确求助?哪些是违规求助? 2788470
关于积分的说明 7786719
捐赠科研通 2444666
什么是DOI,文献DOI怎么找? 1300018
科研通“疑难数据库(出版商)”最低求助积分说明 625731
版权声明 601023