Modification of anaerobic digestion model No.1 with Machine learning models towards applicable and accurate simulation of biomass anaerobic digestion

厌氧消化 消化(炼金术) 生物量(生态学) 无氧运动 生化工程 化学 制浆造纸工业 工艺工程 环境科学 工程类 色谱法 甲烷 生物 生态学 生理学 有机化学
作者
Yadong Ge,Junyu Tao,Zhi Wang,Chao Chen,Lan Mu,Haihua Ruan,Yakelin Rodríguez Yon,Hong Su,Beibei Yan,Guanyi Chen
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:454: 140369-140369 被引量:10
标识
DOI:10.1016/j.cej.2022.140369
摘要

• An M-ADM1 framework based on ML and ADM1 was proposed to simulate biomass anaerobic digestion. • SVM model was embed in M-ADM1 to predict crucial kinetic parameters during anaerobic digestion. • An average R 2 of 0.92 and RMSE of 0.167 were obtained for predicting the crucial kinetic parameters. • The TIC for municipal solid waste, kitchen waste, and sludge reached 0.0163, 0.0327, and 0.0361. • The results provide promising potentials towards simulation of biomass anaerobic digestion. This work proposed a so-called M-ADM1 model for anaerobic digestion simulation, which uses machine learning model to predict the kinetic parameters in anaerobic digestion model No.1 (ADM1). A total of 75 biomass samples were used to establish the machine learning model. Inputs used to predict the kinetic parameters included C, H, O, N, S contents, and digestion temperature. The sensitivities of 17 kinetic parameters were evaluated, and 7 kinetic parameters with the highest sensitivities were selected as model outputs. After model optimization, the average R 2 for predicting the 7 kinetic parameters reached 0.92, and the root mean square error reached 0.167. The accuracy of the overall M-ADM1 expressed by Theil inequality coefficient of municipal solid waste, kitchen waste, and sludge were 0.0163, 0.0327, and 0.0361, respectively. The results validated the hypothesis that accurately predicting some crucial intermediate parameters using machine learning models could enhance the performance of tradition ADM1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
7秒前
Huajing_Yang发布了新的文献求助10
10秒前
11发布了新的文献求助10
10秒前
葡萄成熟应助王算法采纳,获得10
11秒前
11秒前
12秒前
13秒前
lucas发布了新的文献求助10
15秒前
深情安青应助ihc采纳,获得10
16秒前
张楠完成签到,获得积分10
16秒前
18秒前
zhu发布了新的文献求助10
18秒前
冷艳紫南完成签到,获得积分10
20秒前
完美世界应助mm采纳,获得10
21秒前
万能图书馆应助ddddd采纳,获得10
22秒前
所所应助lucas采纳,获得10
24秒前
研友_VZG7GZ应助半夏采纳,获得10
27秒前
摇光完成签到,获得积分10
27秒前
无辜的花卷关注了科研通微信公众号
28秒前
华仔应助Vegetable_Dog采纳,获得10
29秒前
31秒前
顾矜应助Coisini采纳,获得10
33秒前
36秒前
mm发布了新的文献求助10
36秒前
任性茉莉完成签到,获得积分10
38秒前
Judith完成签到 ,获得积分10
40秒前
秋老虎发布了新的文献求助10
41秒前
JamesPei应助儞是哪个采纳,获得10
43秒前
44秒前
无情代亦发布了新的文献求助10
44秒前
45秒前
小梦发布了新的文献求助10
46秒前
46秒前
47秒前
47秒前
Coisini发布了新的文献求助10
47秒前
半夏发布了新的文献求助10
48秒前
田様应助靓丽的发箍采纳,获得10
48秒前
谦让的焱完成签到,获得积分10
51秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789630
关于积分的说明 7791721
捐赠科研通 2445972
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079