Modification of anaerobic digestion model No.1 with Machine learning models towards applicable and accurate simulation of biomass anaerobic digestion

厌氧消化 消化(炼金术) 生物量(生态学) 无氧运动 生化工程 化学 制浆造纸工业 计算机科学 工程类 色谱法 甲烷 生物 生态学 生理学 有机化学
作者
Yadong Ge,Junyu Tao,Zhi Wang,Chao Chen,Lan Mu,Haihua Ruan,Yakelin Rodríguez Yon,Hong Su,Beibei Yan,Guanyi Chen
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:454: 140369-140369 被引量:24
标识
DOI:10.1016/j.cej.2022.140369
摘要

• An M-ADM1 framework based on ML and ADM1 was proposed to simulate biomass anaerobic digestion. • SVM model was embed in M-ADM1 to predict crucial kinetic parameters during anaerobic digestion. • An average R 2 of 0.92 and RMSE of 0.167 were obtained for predicting the crucial kinetic parameters. • The TIC for municipal solid waste, kitchen waste, and sludge reached 0.0163, 0.0327, and 0.0361. • The results provide promising potentials towards simulation of biomass anaerobic digestion. This work proposed a so-called M-ADM1 model for anaerobic digestion simulation, which uses machine learning model to predict the kinetic parameters in anaerobic digestion model No.1 (ADM1). A total of 75 biomass samples were used to establish the machine learning model. Inputs used to predict the kinetic parameters included C, H, O, N, S contents, and digestion temperature. The sensitivities of 17 kinetic parameters were evaluated, and 7 kinetic parameters with the highest sensitivities were selected as model outputs. After model optimization, the average R 2 for predicting the 7 kinetic parameters reached 0.92, and the root mean square error reached 0.167. The accuracy of the overall M-ADM1 expressed by Theil inequality coefficient of municipal solid waste, kitchen waste, and sludge were 0.0163, 0.0327, and 0.0361, respectively. The results validated the hypothesis that accurately predicting some crucial intermediate parameters using machine learning models could enhance the performance of tradition ADM1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴花卷发布了新的文献求助10
刚刚
2秒前
专注白昼发布了新的文献求助10
2秒前
2秒前
Steven发布了新的文献求助10
3秒前
wangyi邮箱完成签到,获得积分10
4秒前
5秒前
柯一一应助机智紫寒采纳,获得10
6秒前
吴彦祖发布了新的文献求助10
7秒前
酷波er应助夏侯无色采纳,获得10
7秒前
7秒前
123456发布了新的文献求助10
7秒前
8秒前
土土发布了新的文献求助10
8秒前
uu发布了新的文献求助10
9秒前
橙子发布了新的文献求助10
11秒前
笨笨如之完成签到,获得积分10
12秒前
但大图完成签到 ,获得积分10
12秒前
我是老大应助清新的问枫采纳,获得10
13秒前
13秒前
一切顺利完成签到,获得积分10
14秒前
Mr_I完成签到,获得积分10
14秒前
土土完成签到,获得积分10
16秒前
16秒前
16秒前
Schroenius完成签到 ,获得积分10
16秒前
CipherSage应助recovery采纳,获得10
17秒前
一切顺利发布了新的文献求助10
18秒前
18秒前
19秒前
20秒前
21秒前
夏侯无色发布了新的文献求助10
21秒前
Nicho发布了新的文献求助10
21秒前
蜗牛先生发布了新的文献求助10
23秒前
常归尘发布了新的文献求助10
23秒前
别来无恙发布了新的文献求助10
24秒前
24秒前
zj发布了新的文献求助10
25秒前
25秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962701
求助须知:如何正确求助?哪些是违规求助? 3508707
关于积分的说明 11142251
捐赠科研通 3241458
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872968
科研通“疑难数据库(出版商)”最低求助积分说明 803517