导水管周围灰质
神经科学
前额叶皮质
心理学
逃生响应
应对(心理学)
背外侧前额叶皮质
光遗传学
中脑
中枢神经系统
临床心理学
认知
作者
Shane B. Johnson,Ryan T. Lingg,Timothy D. Skog,Dalton C. Hinz,Sara A. Romig-Martin,Victor Viau,Nandakumar S. Narayanan,Jason J. Radley
标识
DOI:10.1073/pnas.2210783119
摘要
The question of how the brain links behavioral and biological features of defensive responses has remained elusive. The importance of this problem is underscored by the observation that behavioral passivity in stress coping is associated with elevations in glucocorticoid hormones, and each may carry risks for susceptibility to a host of stress-related diseases. Past work implicates the medial prefrontal cortex (mPFC) in the top-down regulation of stress-related behaviors; however, it is unknown whether such changes have the capacity to buffer against the longer-lasting biological consequences associated with aversive experiences. Using the shock probe defensive burying test in rats to naturalistically measure behavioral and endocrine features of coping, we observed that the active behavioral component of stress coping is associated with increases in activity along a circuit involving the caudal mPFC and midbrain dorsolateral periaqueductal gray (PAG). Optogenetic manipulations of the caudal mPFC-to-dorsolateral PAG pathway bidirectionally modulated active (escape and defensive burying) behaviors, distinct from a rostral mPFC–ventrolateral PAG circuit that instead limited passive (immobility) behavior. Strikingly, under conditions that biased rats toward a passive coping response set, including exaggerated stress hormonal output and increased immobility, excitation of the caudal mPFC–dorsolateral PAG projection significantly attenuated each of these features. These results lend insight into how the brain coordinates response features to overcome passive coping and may be of importance for understanding how activated neural systems promote stress resilience.
科研通智能强力驱动
Strongly Powered by AbleSci AI