骨肉瘤
遗传增强
自杀基因
基因沉默
转染
癌症研究
病毒载体
RNA干扰
载体(分子生物学)
PLK1
癌细胞
生物
细胞周期
基因
癌症
核糖核酸
遗传学
重组DNA
作者
Meirong Li,Zheng‐Ian Lin,Jingyu Yang,Hanyu Huang,Guan‐Lin Liu,Qiqi Liu,Xinmeng Zhang,Ying Zhang,Zhourui Xu,Hui‐Ping Lin,Yujuan Chai,Xin Chen,Bao‐Tsan Ko,Jia Liu,Chih‐Kuang Chen,Chengbin Yang
标识
DOI:10.1002/adhm.202201306
摘要
Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo-like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference-based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO2 -derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo-lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down-regulated. Subsequently, cells are arrested in the G2 /M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle-based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI