Learning Dual-view User Representations for Enhanced Sequential Recommendation

计算机科学 可解释性 偏爱 用户建模 推荐系统 对偶(语法数字) 情报检索 因子(编程语言) 图形 人工智能 机器学习 计算机用户满意度 人机交互 理论计算机科学 用户体验设计 用户界面 用户界面设计 数学 艺术 统计 文学类 程序设计语言 操作系统
作者
Lyuxin Xue,Deqing Yang,Shuoyao Zhai,Yuxin Li,Yanghua Xiao
出处
期刊:ACM Transactions on Information Systems 被引量:5
标识
DOI:10.1145/3572028
摘要

Sequential recommendation (SR) aims to predict a user’s next interacted item given his/her historical interactions. Most existing sequential recommendation systems model user preferences only with item-level representations, where a user’s interaction sequence are often modeled with sequential or graph-based method to infer the user’s sequential interaction pattern. However, since a user’s preference factors may vary over time, the user modeling on item-level could hardly represent the user’s preference precisely and sufficiently, resulting in suboptimal recommendation performance. In addition, the recommendation results based on the item-level user representations lack the interpretability of preference factors. To address these problems, we propose a novel SR model with dual-view user representations in this paper, namely DUVRec, where a user’s preference is learned based on the representations of two distinct views, i.e., item view and factor view . Specifically, the item-view user representation is learned as the previous SR models to encode the user preference of item level, while the factor-view user representation is learned by an coarse-grained graph embedding method to explicitly represent the user in terms of preference factors. As a result, such dual-view user representations are more comprehensive than that in the previous SR models, leading to enhanced SR performance. Furthermore, we design a contrastive learning strategy to achieve mutual complementation between these two views. Our extensive experiments upon three benchmark datasets justify DUVRec’s superior performance over the state-of-the-art SR models, including the advantage of the dual-view contrastive learning. In addition, DUVRec’s capability of providing explanations on recommendation results is also demonstrated through some specific case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
distinct发布了新的文献求助10
刚刚
刚刚
YYA完成签到 ,获得积分10
1秒前
1秒前
2秒前
LIJUNYING完成签到 ,获得积分10
2秒前
高大凌寒完成签到,获得积分10
3秒前
lidayu发布了新的文献求助10
3秒前
共享精神应助苏翰英采纳,获得10
4秒前
开朗邪欢完成签到,获得积分10
5秒前
Andrew发布了新的文献求助10
5秒前
6秒前
科研小bai完成签到,获得积分10
6秒前
自然钢笔发布了新的文献求助10
7秒前
7秒前
三川故里完成签到,获得积分20
7秒前
鱼先生发布了新的文献求助10
8秒前
9秒前
10秒前
12秒前
12秒前
吉祥发布了新的文献求助10
12秒前
三川故里发布了新的文献求助10
13秒前
十三完成签到 ,获得积分10
14秒前
14秒前
苏翰英发布了新的文献求助10
15秒前
风起人散完成签到,获得积分10
15秒前
调研昵称发布了新的文献求助10
16秒前
孟冬发布了新的文献求助10
16秒前
所所应助ycw123采纳,获得10
16秒前
Elton发布了新的文献求助10
16秒前
斩颓发布了新的文献求助10
17秒前
jevon应助lidayu采纳,获得10
17秒前
酷波er应助吉祥采纳,获得10
20秒前
20秒前
蚌埠住不了完成签到 ,获得积分10
21秒前
22秒前
如意竺完成签到,获得积分10
23秒前
23秒前
达达完成签到,获得积分10
23秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3239388
求助须知:如何正确求助?哪些是违规求助? 2884684
关于积分的说明 8234946
捐赠科研通 2552905
什么是DOI,文献DOI怎么找? 1381036
科研通“疑难数据库(出版商)”最低求助积分说明 649172
邀请新用户注册赠送积分活动 624849