Learning Dual-view User Representations for Enhanced Sequential Recommendation

计算机科学 可解释性 偏爱 用户建模 推荐系统 对偶(语法数字) 情报检索 因子(编程语言) 图形 人工智能 机器学习 计算机用户满意度 人机交互 理论计算机科学 用户体验设计 用户界面 用户界面设计 数学 程序设计语言 艺术 文学类 操作系统 统计
作者
Lyuxin Xue,Deqing Yang,Shuoyao Zhai,Yuxin Li,Yanghua Xiao
出处
期刊:ACM Transactions on Information Systems [Association for Computing Machinery]
被引量:5
标识
DOI:10.1145/3572028
摘要

Sequential recommendation (SR) aims to predict a user’s next interacted item given his/her historical interactions. Most existing sequential recommendation systems model user preferences only with item-level representations, where a user’s interaction sequence are often modeled with sequential or graph-based method to infer the user’s sequential interaction pattern. However, since a user’s preference factors may vary over time, the user modeling on item-level could hardly represent the user’s preference precisely and sufficiently, resulting in suboptimal recommendation performance. In addition, the recommendation results based on the item-level user representations lack the interpretability of preference factors. To address these problems, we propose a novel SR model with dual-view user representations in this paper, namely DUVRec, where a user’s preference is learned based on the representations of two distinct views, i.e., item view and factor view . Specifically, the item-view user representation is learned as the previous SR models to encode the user preference of item level, while the factor-view user representation is learned by an coarse-grained graph embedding method to explicitly represent the user in terms of preference factors. As a result, such dual-view user representations are more comprehensive than that in the previous SR models, leading to enhanced SR performance. Furthermore, we design a contrastive learning strategy to achieve mutual complementation between these two views. Our extensive experiments upon three benchmark datasets justify DUVRec’s superior performance over the state-of-the-art SR models, including the advantage of the dual-view contrastive learning. In addition, DUVRec’s capability of providing explanations on recommendation results is also demonstrated through some specific case studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
milly完成签到,获得积分10
1秒前
党参完成签到,获得积分10
1秒前
1秒前
小马甲应助tdtk采纳,获得10
2秒前
科研通AI2S应助moon采纳,获得10
2秒前
小谢同学完成签到 ,获得积分10
2秒前
饱满香彤完成签到 ,获得积分20
2秒前
wp完成签到,获得积分10
2秒前
奇艺奇发布了新的文献求助10
3秒前
研友_nxeAlZ发布了新的文献求助10
3秒前
3秒前
向日葵完成签到,获得积分10
4秒前
无情的牛马完成签到,获得积分10
4秒前
Tinsulfides完成签到,获得积分10
4秒前
Yanis完成签到,获得积分10
5秒前
5秒前
阿九发布了新的文献求助10
5秒前
闪闪的冬云完成签到,获得积分20
6秒前
Smilegate完成签到,获得积分10
6秒前
圈圈完成签到 ,获得积分10
6秒前
7秒前
Tqun完成签到,获得积分10
7秒前
任性觅翠完成签到,获得积分10
7秒前
7秒前
丢丢完成签到 ,获得积分10
7秒前
喜宝完成签到 ,获得积分10
7秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
8秒前
脑洞疼应助破晓之照采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
8秒前
我是老大应助科研通管家采纳,获得10
9秒前
科目三应助ning采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337441
求助须知:如何正确求助?哪些是违规求助? 4474663
关于积分的说明 13925195
捐赠科研通 4369647
什么是DOI,文献DOI怎么找? 2400867
邀请新用户注册赠送积分活动 1393968
关于科研通互助平台的介绍 1365793