亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparison of the Prediction of BOF End‐Point Phosphorus Content Among Machine Learning Models and Metallurgical Mechanism Model

冶金 石灰 相关系数 炼钢 支持向量机 预测建模 均方误差 内容(测量理论) 随机森林 终点 梯度升压 回归分析 统计 决定系数 材料科学 机器学习 计算机科学 数学 数学分析 几何学
作者
Runhao Zhang,Jian Yang,Siwei Wu,Han Sun,Wenkui Yang
出处
期刊:Steel Research International [Wiley]
卷期号:94 (5) 被引量:22
标识
DOI:10.1002/srin.202200682
摘要

The five machine learning models (MLM) of ridge regression, gradient boosting regression (GBR), support vector regression, random forest regression (RFR), convolutional neural network, and a metallurgical mechanism model (MMM) are compared in predicting the end‐point P content in the basic oxygen furnace steelmaking process. The prediction accuracy of MMM is much lower than those of five MLM. The GBR and RFR models have the best performance, with the correlation coefficient values of 0.599 and 0.608, respectively. The smallest mean absolute relative error value of 0.155 and the root mean square error value of 0.00319 are obtained with GBR and RFR, respectively. The values of correlation coefficient after data distribution optimization for all MLM are increased two times higher than before. The second blowing time, lime weight, and oxygen consumption amount are evaluated to have the greatest impacts on the end‐point P content. The end‐point P content decreases with decreasing the second blowing time and with increasing the lime weight and the oxygen consumption amount. The GBR and RFR models are optimized by removing the variables with little impacts on the end‐point P content. The highest prediction accuracy is obtained when 14 variables are remained.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
51秒前
海绵宝宝完成签到 ,获得积分10
1分钟前
Jasper应助阳光的星月采纳,获得10
1分钟前
TXZ06完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
打打应助朴素海亦采纳,获得10
1分钟前
方汀应助朴素海亦采纳,获得10
2分钟前
2分钟前
dd完成签到,获得积分10
3分钟前
3分钟前
开朗大雁完成签到 ,获得积分10
3分钟前
香蕉觅云应助科研通管家采纳,获得10
3分钟前
荷兰香猪完成签到,获得积分10
3分钟前
3分钟前
3分钟前
阳光的星月完成签到,获得积分10
3分钟前
研友_8RyzBZ完成签到,获得积分20
3分钟前
3分钟前
3分钟前
huahuaaixuexi完成签到,获得积分10
3分钟前
3分钟前
情怀应助成成鹅了采纳,获得10
3分钟前
苗龙伟完成签到 ,获得积分10
3分钟前
dd发布了新的文献求助200
4分钟前
852应助成成鹅了采纳,获得30
4分钟前
林妹妹完成签到 ,获得积分10
4分钟前
zsmj23完成签到 ,获得积分0
4分钟前
5分钟前
冷酷的如松完成签到,获得积分10
5分钟前
5分钟前
成成鹅了发布了新的文献求助10
5分钟前
5分钟前
5分钟前
丘比特应助科研通管家采纳,获得30
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
成成鹅了发布了新的文献求助30
5分钟前
LX1005完成签到,获得积分10
5分钟前
5分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634903
求助须知:如何正确求助?哪些是违规求助? 4734139
关于积分的说明 14989445
捐赠科研通 4792634
什么是DOI,文献DOI怎么找? 2559723
邀请新用户注册赠送积分活动 1520035
关于科研通互助平台的介绍 1480107