清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comparison of the Prediction of BOF End‐Point Phosphorus Content Among Machine Learning Models and Metallurgical Mechanism Model

冶金 石灰 相关系数 炼钢 支持向量机 预测建模 均方误差 内容(测量理论) 随机森林 终点 梯度升压 回归分析 统计 决定系数 材料科学 机器学习 计算机科学 数学 数学分析 几何学
作者
Runhao Zhang,Jian Yang,Siwei Wu,Han Sun,Wenkui Yang
出处
期刊:Steel Research International [Wiley]
卷期号:94 (5) 被引量:22
标识
DOI:10.1002/srin.202200682
摘要

The five machine learning models (MLM) of ridge regression, gradient boosting regression (GBR), support vector regression, random forest regression (RFR), convolutional neural network, and a metallurgical mechanism model (MMM) are compared in predicting the end‐point P content in the basic oxygen furnace steelmaking process. The prediction accuracy of MMM is much lower than those of five MLM. The GBR and RFR models have the best performance, with the correlation coefficient values of 0.599 and 0.608, respectively. The smallest mean absolute relative error value of 0.155 and the root mean square error value of 0.00319 are obtained with GBR and RFR, respectively. The values of correlation coefficient after data distribution optimization for all MLM are increased two times higher than before. The second blowing time, lime weight, and oxygen consumption amount are evaluated to have the greatest impacts on the end‐point P content. The end‐point P content decreases with decreasing the second blowing time and with increasing the lime weight and the oxygen consumption amount. The GBR and RFR models are optimized by removing the variables with little impacts on the end‐point P content. The highest prediction accuracy is obtained when 14 variables are remained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
47秒前
1分钟前
1分钟前
1分钟前
熊猫胖胖WITH超人完成签到,获得积分20
1分钟前
1分钟前
耍酷平凡发布了新的文献求助10
1分钟前
1分钟前
ewxf2001发布了新的文献求助10
1分钟前
1分钟前
花园里的蒜完成签到 ,获得积分0
1分钟前
荔枝发布了新的文献求助20
2分钟前
ewxf2001完成签到,获得积分10
2分钟前
juan完成签到 ,获得积分10
2分钟前
cxwcn完成签到 ,获得积分10
2分钟前
Hiram完成签到,获得积分10
2分钟前
2分钟前
wmj完成签到,获得积分10
2分钟前
Ava应助落寞的又菡采纳,获得10
2分钟前
刚子完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
jiejie完成签到,获得积分10
4分钟前
4分钟前
沿途有你完成签到 ,获得积分10
4分钟前
耍酷平凡完成签到,获得积分10
4分钟前
荔枝发布了新的文献求助10
5分钟前
5分钟前
连安阳完成签到,获得积分10
5分钟前
6分钟前
荔枝发布了新的文献求助10
6分钟前
丁老三完成签到 ,获得积分10
6分钟前
7分钟前
Jim发布了新的文献求助10
8分钟前
8分钟前
8分钟前
两个榴莲完成签到,获得积分0
8分钟前
8分钟前
Unlisted发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582521
求助须知:如何正确求助?哪些是违规求助? 4000238
关于积分的说明 12382295
捐赠科研通 3675277
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108