Contamination vertical distribution and key factors identification of metal(loid)s in site soil from an abandoned Pb/Zn smelter using machine learning

环境化学 金属 冶炼 土工试验 土壤水分 土壤污染 环境科学 污染 土壤质地 土壤科学 表土 土层 化学 矿物学 生态学 有机化学 生物
作者
Zhaohui Guo,Yunxia Zhang,Rui Xu,Huimin Xie,Xiyuan Xiao,Chi Peng
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:856: 159264-159264 被引量:23
标识
DOI:10.1016/j.scitotenv.2022.159264
摘要

Soil heterogeneity makes the vertical distribution of metal(loid)s in site soil vary considerably and poses a challenge for identifying the key factors of metal(loid)s migration in site soil profiles. In this study, a machine learning (ML) model was developed to study a typical abandoned Pb/Zn smelter using 267 site soils from 46 drilling points. Results showed that a well-trained ML model could be used to identify the key factors in determining the contamination vertical distribution and predict the metal(loid)s contents in subsurface soil. As, Cd, Pb, and Zn were the primary pollutants and their vertical migration depth arrived to 4-6 m. Based on the predictive performance of different ML algorithms, the extreme gradient boosting (XGB) was selected as the best model to produce accurate predictions for the most metal(loid)s content. Contents of As, Cd, Pb, and Zn in the heavily contaminated zones declined with an increase of soil depth. The metal(loid) contents in surface soil of 0-2 m could be readily used to predict the content of Cd, Cr, Hg, and Zn in subsurface soil from 2 m to 10 m. Based on the metal-specific XGB models, sulfur content, functional area, and soil texture were identified as key factors affecting the vertical distribution of As, Cd, Pb, and Zn in site soil. Results suggested the ML method is helpful to manage the potential environmental risks of metal(loid)s in Pb/Zn smelting site.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
123发布了新的文献求助10
2秒前
2秒前
2秒前
星辰坠于海应助Cyber_relic采纳,获得50
3秒前
李爱国应助嘉人采纳,获得10
3秒前
3秒前
3秒前
小马甲应助文光采纳,获得10
4秒前
19554133922发布了新的文献求助10
5秒前
5秒前
Alive发布了新的文献求助10
5秒前
zhangyan00004完成签到,获得积分10
5秒前
小黑超努力完成签到,获得积分10
6秒前
6秒前
tulips发布了新的文献求助10
6秒前
汤汤完成签到,获得积分10
7秒前
领导范儿应助nini采纳,获得30
8秒前
Jialiang完成签到,获得积分10
8秒前
冷艳从梦发布了新的文献求助10
8秒前
木光发布了新的文献求助10
9秒前
无花果应助Alive采纳,获得10
10秒前
11秒前
落星发布了新的文献求助10
11秒前
科研通AI5应助foreve1采纳,获得10
11秒前
科研通AI5应助zz采纳,获得10
12秒前
体贴恋风发布了新的文献求助10
12秒前
14秒前
14秒前
15秒前
文光发布了新的文献求助10
17秒前
CipherSage应助Wensoo采纳,获得10
17秒前
17秒前
炙热的豆芽完成签到,获得积分10
18秒前
缓慢丸子发布了新的文献求助10
19秒前
19秒前
xiaozhao发布了新的文献求助30
20秒前
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542995
求助须知:如何正确求助?哪些是违规求助? 3120396
关于积分的说明 9342373
捐赠科研通 2818391
什么是DOI,文献DOI怎么找? 1549539
邀请新用户注册赠送积分活动 722168
科研通“疑难数据库(出版商)”最低求助积分说明 712992