亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Application of spectral small-sample data combined with a method of spectral data augmentation fusion (SDA-Fusion) in cancer diagnosis

融合 传感器融合 计算机科学 样品(材料) 模式识别(心理学) 人工智能 化学 色谱法 语言学 哲学
作者
Xudan Zhang,Hongyi Li,Xuecong Tian,Chen Chen,Ying Su,Min Li,Jianying Lv,Cheng Chen,Xiaoyi Lv
出处
期刊:Chemometrics and Intelligent Laboratory Systems [Elsevier BV]
卷期号:231: 104681-104681 被引量:11
标识
DOI:10.1016/j.chemolab.2022.104681
摘要

Cancer is one of the most life-threatening diseases to human life, whose accurate diagnosis is the prerequisite for precise treatment. The detection technology with computer-aided vibrational spectroscopy has achieved gratifying results in intelligent cancer diagnosis. However, limited by factors such as the number of cancer instances in clinical practice and the cost of spectral acquisition, it is difficult to obtain a large amount of spectral data, which ultimately puts constraints on the performance optimization and improvement of diagnostic models. Faced with the above challenges, we adopted the different data augmentation strategies in this study to obtain more available training data. In addition to the augmentation methods commonly used in vibrational spectroscopy, such as adding random noise, adding random variations from offset, multiplication and slope, and synthetic minority over-sampling technique (SMOTE), two generative adversarial networks with different architectures were selected for comparison. One is based on artificial neural networks (ANN) and the other on convolutional neural networks (CNN). In the experiments, t-distributed stochastic neighbor embedding (t-SNE) visualization and cosine similarity (CS) measure were opted to evaluate the quality of generated new spectra. New spectra with different manifestations were produced by dissimilar augmentation tactics. Effective merging of heterogeneous data information generated by different augmentation techniques can further enlarge the sample space and increase the diversity of samples. With these factors in mind, we proposed a new spectral data augmentation fusion (SDA-Fusion) method to acquire more available instances. This method is carried out by fusing the new data generated by the five different data augmentation techniques mentioned before. Finally, three groups of experiments, with the original training data, the augmented training data, and the fused training data as input, were designed. Support vector machines (SVM) with different kernel functions, CNN as well as ResNet were used as classification models. Group five-fold (Group5Fold) cross-validation was utilized to assess model performance. We applied the augmentation methods and experimental ideas mentioned above to two real datasets – the Raman spectral dataset of lung cancer and the mid-infrared spectral dataset of glioma, respectively. The results illustrate that the generative adversarial networks working through adversarial learning concepts can produce new data approximate to the original. This technique can be a complementary means for expanding the size of the vibrational spectroscopy data. Moreover, by introducing different augmentation strategies, the classification accuracies of most classifiers were higher than the original training set. In addition, a more extensive and heterogeneous dataset can be yielded using our proposed SDA-Fusion method. We have trained more robust models that provided better predictive performance for both spectral datasets on the foundation of these data. This research aims to address the lack of data volume of vibrational spectra from cancer at the data level. It can provide the solution ideas to be consulted by other researchers in the future when faced with the small-sample learning tasks for vibrational spectra. • A new spectral data augmentation fusion (SDA-Fusion) method was built to capture more available training data. • This study assessed the quality of new spectra generated by different data augmentation strategies. • This study addressed the lack of data volume of vibrational spectra from cancer at the data level. • A more extensive and heterogeneous dataset can provide better predictive performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
馆长应助科研通管家采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
11秒前
1分钟前
Dreamer.发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
星辰大海应助cerium1925采纳,获得10
2分钟前
馆长应助科研通管家采纳,获得10
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
2分钟前
严冰蝶完成签到 ,获得积分10
2分钟前
cerium1925发布了新的文献求助10
2分钟前
Santiago完成签到,获得积分10
2分钟前
LMW应助cerium1925采纳,获得10
2分钟前
3分钟前
3分钟前
东篱发布了新的文献求助10
4分钟前
馆长应助科研通管家采纳,获得10
4分钟前
科研通AI6应助东篱采纳,获得10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
5分钟前
5分钟前
烟花应助曾泰平采纳,获得10
5分钟前
5分钟前
5分钟前
起风了完成签到 ,获得积分10
5分钟前
曾泰平发布了新的文献求助10
6分钟前
Able完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
馆长应助科研通管家采纳,获得10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
馆长应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
忧郁小鸽子完成签到,获得积分10
6分钟前
量子星尘发布了新的文献求助10
7分钟前
cadnash完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4595764
求助须知:如何正确求助?哪些是违规求助? 4008008
关于积分的说明 12408755
捐赠科研通 3686743
什么是DOI,文献DOI怎么找? 2032042
邀请新用户注册赠送积分活动 1065278
科研通“疑难数据库(出版商)”最低求助积分说明 950616