Bibliometric analysis and system review of vehicle routing optimization for emergency material distribution

斯科普斯 计算机科学 车辆路径问题 运筹学 光学(聚焦) 应急管理 多目标优化 比例(比率) 布线(电子设计自动化) 管理科学 数据科学 工程类 地理 政治学 梅德林 计算机网络 物理 地图学 光学 机器学习 法学
作者
Jinxing Shen,Kun Liu,Changxi Ma,Yongpeng Zhao,Chuwei Shi
出处
期刊:Journal of Traffic and Transportation Engineering [Elsevier BV]
卷期号:9 (6): 893-911 被引量:17
标识
DOI:10.1016/j.jtte.2022.10.001
摘要

Determining the optimal vehicle routing of emergency material distribution (VREMD) is one of the core issues of emergency management, which is strategically important to improve the effectiveness of emergency response and thus reduce the negative impact of large-scale emergency events. To summarize the latest research progress, we collected 511 VREMD-related articles published from 2010 to the present from the Scopus database and conducted a bibliometric analysis using VOSviewer software. Subsequently, we cautiously selected 49 articles from these publications for system review; sorted out the latest research progress in model construction and solution algorithms; and summarized the evolution trend of keywords, research gaps, and future works. The results show that domestic scholars and research organizations held an unqualified advantage regarding the number of published papers. However, these organizations with the most publications performed poorly regarding the number of literature citations. China and the US have contributed the vast majority of the literature, and there are close collaborations between researchers from both countries. The optimization model of VREMD can be divided into single-, multi-, and joint-objective models. The shortest travel time is the most common optimization objective in the single-objective optimization model. Several scholars focus on multiobjective optimization models to consider conflicting objectives simultaneously. In recent literature, scholars have focused on the impact of uncertainty and special events (e.g., COVID-19) on VREMD. Moreover, some scholars focus on joint optimization models to optimize vehicle routes and central locations (or material allocation) simultaneously. Solution algorithms can be divided into two primary categories, i.e., mathematical planning methods and intelligent evolutionary algorithms. The branch and bound algorithm is the most dominant mathematical planning algorithm, while genetic algorithms and their enhancements are the most commonly used intelligent evolutionary algorithms. It is shown that the nondominated sorting genetic algorithm II (NSGA-II) can effectively solve the multiobjective model of VREMD. To further improve the algorithm's performance, researchers have proposed improved hybrid intelligent algorithms that combine the advantages of NSGA-II and certain other algorithms. Scholars have also proposed a series of optimization algorithms for specific scenarios. With the development of new technologies and computation methods, it will be exciting to construct optimization models that consider uncertainty, heterogeneity, and temporality for large-scale real-world issues and develop generalized solution approaches rather than those applicable to specific scenarios.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuesensu完成签到 ,获得积分10
2秒前
fanssw完成签到 ,获得积分10
3秒前
机智的乌完成签到 ,获得积分10
3秒前
小荣布布完成签到 ,获得积分10
9秒前
巴达天使完成签到,获得积分10
18秒前
蔚蓝完成签到 ,获得积分10
19秒前
轩辕德地完成签到,获得积分10
21秒前
MrChew完成签到 ,获得积分10
23秒前
温柔梦松完成签到 ,获得积分10
25秒前
我是老大应助聪慧芷巧采纳,获得10
25秒前
小美酱完成签到 ,获得积分10
31秒前
小美酱完成签到 ,获得积分10
31秒前
ylkk完成签到 ,获得积分10
33秒前
34秒前
贰鸟应助科研通管家采纳,获得10
34秒前
pangkuan发布了新的文献求助10
34秒前
xxiao完成签到 ,获得积分10
35秒前
orange完成签到 ,获得积分10
38秒前
健忘的晓小完成签到 ,获得积分10
38秒前
优雅含灵完成签到 ,获得积分10
38秒前
英俊的小天鹅完成签到 ,获得积分10
42秒前
Ayn完成签到 ,获得积分10
42秒前
拉长的诗蕊完成签到,获得积分10
44秒前
wp4455777完成签到,获得积分10
45秒前
热情依白完成签到 ,获得积分10
46秒前
在阳光下完成签到 ,获得积分10
46秒前
123完成签到 ,获得积分10
49秒前
林黛玉倒拔垂杨柳完成签到 ,获得积分10
53秒前
qianci2009完成签到,获得积分10
54秒前
HMR完成签到 ,获得积分10
58秒前
清脆愫完成签到 ,获得积分10
1分钟前
西柚子完成签到 ,获得积分10
1分钟前
1分钟前
磊磊完成签到,获得积分10
1分钟前
dreamode完成签到,获得积分10
1分钟前
badgerwithfisher完成签到,获得积分10
1分钟前
阿烨完成签到,获得积分10
1分钟前
zkylh完成签到,获得积分10
1分钟前
喵咪西西完成签到 ,获得积分10
1分钟前
秋半梦完成签到 ,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Questioning in the Primary School 500
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
频率源分析与设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3686811
求助须知:如何正确求助?哪些是违规求助? 3237188
关于积分的说明 9829597
捐赠科研通 2949071
什么是DOI,文献DOI怎么找? 1617244
邀请新用户注册赠送积分活动 764147
科研通“疑难数据库(出版商)”最低求助积分说明 738360