亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Recognising situation awareness associated with different workloads using EEG and eye-tracking features in air traffic control tasks

计算机科学 工作量 线性判别分析 空中交通管制 人工智能 任务(项目管理) 脑电图 驾驶模拟器 样品(材料) 模式识别(心理学) 模拟 机器学习 工程类 航空航天工程 精神科 化学 系统工程 操作系统 色谱法 心理学
作者
Qinbiao Li,Kam K.H. Ng,S. C. M. Yu,Cho Yin Yiu,Mengtao Lyu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:260: 110179-110179 被引量:48
标识
DOI:10.1016/j.knosys.2022.110179
摘要

The rate of human errors would increase as air traffic control officers (ATCOs) lose situation awareness (SA), which could also be affected by their perceived workloads. Recognising ATCOs SA inadequacy is crucial for ensuring traffic safety. This paper aims to propose a two-phase analytical methodology for revealing SA-related neuro-physiological patterns and hierarchically recognising ATCOs SA loss with workload concerns using EEG and eye-tracking data. A simulated air traffic control (ATC) radar-monitoring experiment involving different task loads with SA-probe tests was first conducted to collect behavioural and physiological (EEG and eye-tracking) data simultaneously, and the NASA Task Load Index (NASA-TLX) scale was used to measure participants’ perceived workloads. In our two-phase methodology, behavioural data representing the task performance was analysed in Phase I using the Gaussian Mixture Model to determine sample’s SA, and the perceived workloads on samples were labelled using NASA-TLX scores. Subsequently, in order to achieve our purposes, the physiological data were annotated based on results from Phase I, the physiological feature base was extracted using a fast Fourier transformation and Hilbert transform in Phase II, and the linear discriminant analysis was then used to extract the core features as inputs to train multiple classifiers. Results showed that the neuro-physiological behaviours of SA loss during normal workloads differed from those in high workload situations. A leave-one-subject-out cross-validation was also performed, and the results demonstrated that the optimal performance was 76.1% for classifying high/low SA (1-Level classification) and 82.7% for recognising low SA associated with high workload (2-Level classification).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
沙海沉戈完成签到,获得积分0
2分钟前
001完成签到 ,获得积分10
3分钟前
minuxSCI完成签到,获得积分10
3分钟前
4分钟前
充电宝应助张立人采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
张立人发布了新的文献求助10
4分钟前
开心每一天完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
8分钟前
8分钟前
在水一方应助可靠的寒风采纳,获得10
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
8分钟前
清逸之风完成签到 ,获得积分10
10分钟前
al完成签到 ,获得积分10
10分钟前
10分钟前
11分钟前
Yan发布了新的文献求助10
11分钟前
12分钟前
天天快乐应助Amor采纳,获得10
12分钟前
nasci发布了新的文献求助10
12分钟前
12分钟前
Amor发布了新的文献求助10
12分钟前
Amor完成签到,获得积分10
12分钟前
12分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Questioning in the Primary School 500
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
频率源分析与设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3686775
求助须知:如何正确求助?哪些是违规求助? 3237129
关于积分的说明 9829486
捐赠科研通 2949062
什么是DOI,文献DOI怎么找? 1617190
邀请新用户注册赠送积分活动 764126
科研通“疑难数据库(出版商)”最低求助积分说明 738360