亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The design of a beam shaping lens with flat surfaces and ultra-thin thickness to convert a Gaussian beam to a top-hat beam

光学 激光束质量 梁(结构) 光束发散 平方米 光束参数积 高斯光束 光束直径 镜头(地质) 材料科学 物理 激光器 激光束
作者
Huiyu Li,Yu Wang,Guangwei Chen
标识
DOI:10.1117/12.2654634
摘要

The beam shaping system to convert the Gaussian beam to top-hat beam is widely used in modem optics such as laser technologies. A general beam shaper is normally composed of a convex or concave lens in nonspherical or freeform, which is bulky in the optical path and turns to a barrier in size minorizing for a compact system. A novel beam shaper with a plane structure with flat surfaces on both bottom and top sides are provided in this paper. Taking advantages of the phase changes by the subwavelength structures and the general Fresnel principle for discrete structures, a metalens with beam shaping function is designed. The phase variation between a Gaussian beam and a top-hat beam is studied with Fourier optics and then is adopted to the layout of the beam shaping metalens. Afterwards, the finite domain time difference method is adopted to simulate the energy distribution of the modulated beam to study the effectiveness of the novel ultra-thin beam shaping metalens. Examples to convert the Gaussian beam to top-hat beam calculated with convex surface and nanopillar array with flat surfaces are illustrated in the paper to demonstrate and discuss the beam shaping results with the novel design in plane form and ultra-thin thickness. According to our study, a beam shaping lens with flat surfaces and thickness smaller than 1 um with the uniformity better than 98% can be achieved at wavelength of 790 nm. Variable beam shaping results could be obtained by the design method to figure out the phase distribution with ray optics and then design the metalens according to the desired phase modulation by arranging the subwavelength structures accordingly. Tue numerical results may pave the way for further design of metalens and offers a solution for compact systems with optical paths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
mysilicon发布了新的文献求助10
19秒前
丁静完成签到 ,获得积分10
22秒前
47秒前
mysilicon关注了科研通微信公众号
1分钟前
Nan发布了新的文献求助30
1分钟前
研友_ZA2B68完成签到,获得积分10
1分钟前
2分钟前
fffccclll完成签到,获得积分10
2分钟前
3分钟前
oywt发布了新的文献求助10
3分钟前
彭于晏应助tbb采纳,获得10
3分钟前
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
3分钟前
moyueeer发布了新的文献求助10
3分钟前
moyueeer完成签到 ,获得积分10
4分钟前
狄安娜GoGo发布了新的文献求助10
5分钟前
香蕉觅云应助科研通管家采纳,获得10
5分钟前
852应助科研通管家采纳,获得10
5分钟前
Aaernan完成签到 ,获得积分10
5分钟前
30完成签到,获得积分10
6分钟前
激动的似狮完成签到,获得积分10
6分钟前
6分钟前
jy发布了新的文献求助10
7分钟前
闪闪蜜粉完成签到 ,获得积分10
7分钟前
科研通AI5应助彩色傲柏采纳,获得10
7分钟前
7分钟前
彩色傲柏发布了新的文献求助10
7分钟前
7分钟前
狄安娜GoGo完成签到,获得积分10
7分钟前
tbb发布了新的文献求助10
7分钟前
jy关注了科研通微信公众号
7分钟前
霍夫曼降解完成签到,获得积分10
9分钟前
9分钟前
9分钟前
Owen应助科研通管家采纳,获得10
9分钟前
tian发布了新的文献求助10
9分钟前
激动的晓筠完成签到 ,获得积分10
9分钟前
Lucas应助查查make采纳,获得10
10分钟前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736630
求助须知:如何正确求助?哪些是违规求助? 3280611
关于积分的说明 10020100
捐赠科研通 2997293
什么是DOI,文献DOI怎么找? 1644517
邀请新用户注册赠送积分活动 782041
科研通“疑难数据库(出版商)”最低求助积分说明 749648