牙乳头
下调和上调
细胞生物学
牙囊
牙骨质
毛囊
刺猬
干细胞
外根鞘
生物
毛乳头
细胞分化
内根鞘
成牙本质细胞
牙科
信号转导
牙本质
生物化学
医学
基因
作者
Xiao Lin,Qian Li,Lei Hu,Canhua Jiang,Shuai Wang,Xiaoshan Wu
标识
DOI:10.1177/00220345221138517
摘要
Root apical complex, including Hertwig's epithelial root sheath, apical papilla, and dental follicle (DF), is the germinal center of root development, wherein the DF constantly develops into periodontal tissue. However, whether DF development is regulated by the adjacent apical papilla remains largely unknown. In this study, we employed a transwell coculture system and found that stem cells from the apical papilla (SCAPs) inhibit the differentiation and maintain the stemness of dental follicle stem cells (DFSCs). Meanwhile, partial SCAP differentiation markers were upregulated after DFSC coculture. High-throughput RNA sequencing revealed that the Hedgehog (Hh) pathway was significantly downregulated in DFSCs cocultured with SCAPs. Upregulation or downregulation of the Hh pathway can respectively activate or inhibit the multidirectional differentiation of DFSCs. Osteoglycin (OGN) (previously known as mimecan) is highly expressed in the dental papilla, similarly to Hh pathway factors. By secreting OGN, SCAP regulated the stemness and multidirectional differentiation of DFSCs via the OGN-Hh pathway. Finally, Ogn-/- mice were established using the CRISPR/Cas9 system. We found that the root length growth rate was accelerated during root development from PN0 to PN30 in Ogn-/- mice. Moreover, the hard tissues (including dentin and cementum) of the root in Ogn-/- mice were thicker than those in wild-type mice. These phenotypes were likely due to Hh pathway activation and the increased cell proliferation and differentiation in both the apical papilla and DF. The current work elucidates the molecular regulation of early periodontal tissue development, providing a theoretical basis for future research on tooth root biology and periodontal tissue regeneration.
科研通智能强力驱动
Strongly Powered by AbleSci AI