Mendelian randomization and genetic colocalization infer the effects of the multi-tissue proteome on 211 complex disease-related phenotypes

孟德尔随机化 全基因组关联研究 蛋白质组 现象 生物 表型 多效性 蛋白质组学 计算生物学 数量性状位点 共域化 遗传学 疾病 遗传关联 生物信息学 单核苷酸多态性 医学 基因 病理 神经科学 遗传变异 基因型
作者
Chengran Yang,Anne M. Fagan,Richard J. Perrin,Hervé Rhinn,Oscar Harari,Carlos Cruchaga
出处
期刊:Genome Medicine [BioMed Central]
卷期号:14 (1) 被引量:4
标识
DOI:10.1186/s13073-022-01140-9
摘要

Human proteins are widely used as drug targets. Integration of large-scale protein-level genome-wide association studies (GWAS) and disease-related GWAS has thus connected genetic variation to disease mechanisms via protein. Previous proteome-by-phenome-wide Mendelian randomization (MR) studies have been mainly focused on plasma proteomes. Previous MR studies using the brain proteome only reported protein effects on a set of pre-selected tissue-specific diseases. No studies, however, have used high-throughput proteomics from multiple tissues to perform MR on hundreds of phenotypes.Here, we performed MR and colocalization analysis using multi-tissue (cerebrospinal fluid (CSF), plasma, and brain from pre- and post-meta-analysis of several disease-focus cohorts including Alzheimer disease (AD)) protein quantitative trait loci (pQTLs) as instrumental variables to infer protein effects on 211 phenotypes, covering seven broad categories: biological traits, blood traits, cancer types, neurological diseases, other diseases, personality traits, and other risk factors. We first implemented these analyses with cis pQTLs, as cis pQTLs are known for being less prone to horizontal pleiotropy. Next, we included both cis and trans conditionally independent pQTLs that passed the genome-wide significance threshold keeping only variants associated with fewer than five proteins to minimize pleiotropic effects. We compared the tissue-specific protein effects on phenotypes across different categories. Finally, we integrated the MR-prioritized proteins with the druggable genome to identify new potential targets.In the MR and colocalization analysis including study-wide significant cis pQTLs as instrumental variables, we identified 33 CSF, 13 plasma, and five brain proteins to be putative causal for 37, 18, and eight phenotypes, respectively. After expanding the instrumental variables by including genome-wide significant cis and trans pQTLs, we identified a total of 58 CSF, 32 plasma, and nine brain proteins associated with 58, 44, and 16 phenotypes, respectively. For those protein-phenotype associations that were found in more than one tissue, the directions of the associations for 13 (87%) pairs were consistent across tissues. As we were unable to use methods correcting for horizontal pleiotropy given most of the proteins were only associated with one valid instrumental variable after clumping, we found that the observations of protein-phenotype associations were consistent with a causal role or horizontal pleiotropy. Between 66.7 and 86.3% of the disease-causing proteins overlapped with the druggable genome. Finally, between one and three proteins, depending on the tissue, were connected with at least one drug compound for one phenotype from both DrugBank and ChEMBL databases.Integrating multi-tissue pQTLs with MR and the druggable genome may open doors to pinpoint novel interventions for complex traits with no effective treatments, such as ovarian and lung cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助大气乐儿采纳,获得10
1秒前
断笔画墨完成签到 ,获得积分10
1秒前
海盐气泡水完成签到,获得积分10
1秒前
lyp完成签到 ,获得积分20
1秒前
漂泊2025完成签到,获得积分10
1秒前
xinL发布了新的文献求助10
1秒前
1秒前
小可爱完成签到,获得积分10
2秒前
内向士萧发布了新的文献求助10
2秒前
小飞虫完成签到,获得积分20
2秒前
DRX完成签到,获得积分10
3秒前
情怀应助李小胖采纳,获得10
3秒前
寒霜扬名完成签到 ,获得积分10
3秒前
4秒前
fanpengzhen发布了新的文献求助10
4秒前
4秒前
星辰大海应助peng采纳,获得10
5秒前
5秒前
不要香菜应助halycon采纳,获得70
5秒前
6秒前
lxl98完成签到 ,获得积分10
7秒前
哈哈哈完成签到,获得积分10
7秒前
杨鹏完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
下一秒微笑完成签到,获得积分10
8秒前
whyzz发布了新的文献求助10
9秒前
无心的天真完成签到 ,获得积分10
9秒前
天天快乐应助zygclwl采纳,获得30
9秒前
老薛发布了新的文献求助10
9秒前
10秒前
gglp完成签到 ,获得积分10
11秒前
沉默的八宝粥完成签到,获得积分10
12秒前
大气乐儿发布了新的文献求助10
12秒前
一只AI艾完成签到,获得积分10
13秒前
张哈哈发布了新的文献求助10
13秒前
xcc完成签到,获得积分10
14秒前
自然呼气完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4616113
求助须知:如何正确求助?哪些是违规求助? 4019457
关于积分的说明 12442484
捐赠科研通 3702637
什么是DOI,文献DOI怎么找? 2041737
邀请新用户注册赠送积分活动 1074341
科研通“疑难数据库(出版商)”最低求助积分说明 957952