Mendelian randomization and genetic colocalization infer the effects of the multi-tissue proteome on 211 complex disease-related phenotypes

孟德尔随机化 全基因组关联研究 蛋白质组 现象 生物 表型 多效性 蛋白质组学 计算生物学 数量性状位点 共域化 遗传学 疾病 遗传关联 生物信息学 单核苷酸多态性 医学 基因 病理 神经科学 遗传变异 基因型
作者
Chengran Yang,Anne M. Fagan,Richard J. Perrin,Hervé Rhinn,Oscar Harari,Carlos Cruchaga
出处
期刊:Genome Medicine [Springer Nature]
卷期号:14 (1) 被引量:4
标识
DOI:10.1186/s13073-022-01140-9
摘要

Human proteins are widely used as drug targets. Integration of large-scale protein-level genome-wide association studies (GWAS) and disease-related GWAS has thus connected genetic variation to disease mechanisms via protein. Previous proteome-by-phenome-wide Mendelian randomization (MR) studies have been mainly focused on plasma proteomes. Previous MR studies using the brain proteome only reported protein effects on a set of pre-selected tissue-specific diseases. No studies, however, have used high-throughput proteomics from multiple tissues to perform MR on hundreds of phenotypes.Here, we performed MR and colocalization analysis using multi-tissue (cerebrospinal fluid (CSF), plasma, and brain from pre- and post-meta-analysis of several disease-focus cohorts including Alzheimer disease (AD)) protein quantitative trait loci (pQTLs) as instrumental variables to infer protein effects on 211 phenotypes, covering seven broad categories: biological traits, blood traits, cancer types, neurological diseases, other diseases, personality traits, and other risk factors. We first implemented these analyses with cis pQTLs, as cis pQTLs are known for being less prone to horizontal pleiotropy. Next, we included both cis and trans conditionally independent pQTLs that passed the genome-wide significance threshold keeping only variants associated with fewer than five proteins to minimize pleiotropic effects. We compared the tissue-specific protein effects on phenotypes across different categories. Finally, we integrated the MR-prioritized proteins with the druggable genome to identify new potential targets.In the MR and colocalization analysis including study-wide significant cis pQTLs as instrumental variables, we identified 33 CSF, 13 plasma, and five brain proteins to be putative causal for 37, 18, and eight phenotypes, respectively. After expanding the instrumental variables by including genome-wide significant cis and trans pQTLs, we identified a total of 58 CSF, 32 plasma, and nine brain proteins associated with 58, 44, and 16 phenotypes, respectively. For those protein-phenotype associations that were found in more than one tissue, the directions of the associations for 13 (87%) pairs were consistent across tissues. As we were unable to use methods correcting for horizontal pleiotropy given most of the proteins were only associated with one valid instrumental variable after clumping, we found that the observations of protein-phenotype associations were consistent with a causal role or horizontal pleiotropy. Between 66.7 and 86.3% of the disease-causing proteins overlapped with the druggable genome. Finally, between one and three proteins, depending on the tissue, were connected with at least one drug compound for one phenotype from both DrugBank and ChEMBL databases.Integrating multi-tissue pQTLs with MR and the druggable genome may open doors to pinpoint novel interventions for complex traits with no effective treatments, such as ovarian and lung cancers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助Karl采纳,获得10
刚刚
4秒前
6秒前
爆米花应助鱼儿采纳,获得10
6秒前
ding应助123456采纳,获得10
8秒前
10秒前
一枚青椒发布了新的文献求助10
10秒前
英姑应助大熊采纳,获得10
12秒前
朴素亦绿完成签到,获得积分20
12秒前
善学以致用应助dangan采纳,获得10
14秒前
16秒前
笔芯完成签到,获得积分10
18秒前
ori完成签到,获得积分10
18秒前
一枚青椒发布了新的文献求助30
18秒前
田様应助ryt采纳,获得10
19秒前
20秒前
20秒前
20秒前
21秒前
22秒前
22秒前
隋阳完成签到,获得积分10
22秒前
Karl发布了新的文献求助10
24秒前
123456发布了新的文献求助10
25秒前
七栀完成签到,获得积分10
25秒前
25秒前
大熊发布了新的文献求助10
25秒前
25秒前
小蘑菇应助ubuntu采纳,获得10
26秒前
27秒前
27秒前
dangan发布了新的文献求助10
27秒前
哎嘿应助Yihvan采纳,获得10
28秒前
好好顶顶顶顶完成签到,获得积分10
28秒前
Niar完成签到 ,获得积分10
28秒前
英俊的铭应助Yuriko采纳,获得10
28秒前
28秒前
28秒前
29秒前
Karl完成签到,获得积分10
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152088
求助须知:如何正确求助?哪些是违规求助? 2803383
关于积分的说明 7853471
捐赠科研通 2460824
什么是DOI,文献DOI怎么找? 1310064
科研通“疑难数据库(出版商)”最低求助积分说明 629107
版权声明 601765