Radiomics in veterinary medicine: Overview, methods, and applications

无线电技术 医学 数据科学 医学物理学 协调 大数据 精密医学 医学影像学 人工智能 计算机科学 数据挖掘 放射科 病理 声学 物理
作者
Parminder S. Basran,Ian R. Porter
出处
期刊:Veterinary Radiology & Ultrasound [Wiley]
卷期号:63 (S1): 828-839 被引量:11
标识
DOI:10.1111/vru.13156
摘要

Radiomics, or quantitative image analysis from radiographic image data, borrows the suffix from other emerging -omics fields of study, such as genomics, proteomics, and metabolomics. This report provides an overview of the general principles of how radiomic features are computed, describes major types of morphological, first order, and texture features, and the applications, challenges, and opportunities of radiomics as applied in veterinary medicine. Some advantages radiomics has over traditional semantic radiological features include standardized methodology in computing semantic features, the ability to compute features in multi-dimensional images, their newfound associations with genomic and pathological abnormalities, and the number of perceptible and imperceptible features available for regression or classification modeling. Some challenges in deploying radiomics in a clinical setting include sensitivity to image acquisition settings and image artifacts, pre- and post-image reconstruction and calculation settings, variability in feature estimates stemming from inter- and intra-observer contouring errors, and challenges with software and data harmonization and generalizability of findings given the challenges of small sample size and patient selection bias in veterinary medicine. Despite this, radiomics has enormous potential in patient-centric diagnostics, prognosis, and theragnostics. Fully leveraging the utility of radiomics in veterinary medicine will require inter-institutional collaborations, data harmonization, and data sharing strategies amongst institutions, transparent and robust model development, and multi-disciplinary efforts within and outside the veterinary medical imaging community.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助多来米采纳,获得10
刚刚
研友_VZG7GZ应助蓝色的云采纳,获得10
刚刚
1秒前
long发布了新的文献求助30
1秒前
2秒前
2秒前
3秒前
陈阿九发布了新的文献求助20
3秒前
汎影发布了新的文献求助10
5秒前
开心最重要完成签到,获得积分10
5秒前
77完成签到,获得积分20
6秒前
Tian完成签到,获得积分10
6秒前
jsdyys发布了新的文献求助10
6秒前
90yied发布了新的文献求助10
7秒前
NIUBEN发布了新的文献求助10
7秒前
桐桐应助lemon采纳,获得10
7秒前
科研通AI5应助小飞飞采纳,获得10
8秒前
善学以致用应助古铜麦麦采纳,获得10
10秒前
美丽觅夏完成签到 ,获得积分10
11秒前
11秒前
long完成签到,获得积分10
11秒前
金华完成签到,获得积分10
11秒前
科研通AI5应助77采纳,获得10
12秒前
12秒前
13秒前
keyantong发布了新的文献求助10
14秒前
14秒前
琉生完成签到,获得积分20
14秒前
90yied完成签到,获得积分10
16秒前
ywjkeyantong应助12345采纳,获得30
17秒前
多来米发布了新的文献求助10
17秒前
17秒前
烂漫破茧发布了新的文献求助10
17秒前
17秒前
xzy完成签到,获得积分10
18秒前
椰子水发布了新的文献求助10
18秒前
19秒前
兔先生完成签到,获得积分10
19秒前
Catalina_S应助一条贤与采纳,获得20
21秒前
xzy发布了新的文献求助10
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488751
求助须知:如何正确求助?哪些是违规求助? 3076283
关于积分的说明 9144615
捐赠科研通 2768593
什么是DOI,文献DOI怎么找? 1519274
邀请新用户注册赠送积分活动 703714
科研通“疑难数据库(出版商)”最低求助积分说明 701952