A novel power prior approach for borrowing historical control data in clinical trials

先验概率 统计能力 样本量测定 计算机科学 计量经济学 功率(物理) 控制(管理) 事先信息 I类和II类错误 统计 数据挖掘 贝叶斯概率 数学 人工智能 物理 量子力学
作者
Yaru Shi,Wen Li,Guanghan Liu
出处
期刊:Statistical Methods in Medical Research [SAGE]
卷期号:32 (3): 493-508 被引量:3
标识
DOI:10.1177/09622802221146309
摘要

There has been an increased interest in borrowing information from historical control data to improve the statistical power for hypothesis testing, therefore reducing the required sample sizes in clinical trials. To account for the heterogeneity between the historical and current trials, power priors are often considered to discount the information borrowed from the historical data. However, it can be challenging to choose a fixed power prior parameter in the application. The modified power prior approach, which defines a random power parameter with initial prior to control the amount of historical information borrowed, may not directly account for heterogeneity between the trials. In this paper, we propose a novel approach to pick a power prior based on some direct measures of distributional differences between historical control data and current control data under normal assumptions. Simulations are conducted to investigate the performance of the proposed approach compared with current approaches (e.g. commensurate prior, meta-analytic-predictive, and modified power prior). The results show that the proposed power prior improves the study power while controlling the type I error within a tolerable limit when the distribution of the historical control data is similar to that of the current control data. The method is developed for both superiority and non-inferiority trials and is illustrated with an example from vaccine clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
淡淡采白关注了科研通微信公众号
1秒前
tY完成签到,获得积分20
1秒前
傲娇的凡旋应助卢健辉采纳,获得10
2秒前
CodeCraft应助calbee采纳,获得10
2秒前
4秒前
4秒前
sw98318完成签到,获得积分10
5秒前
impala完成签到,获得积分10
5秒前
5秒前
欣喜访旋发布了新的文献求助10
5秒前
朱江涛完成签到 ,获得积分10
6秒前
角鸮完成签到,获得积分10
6秒前
zly完成签到 ,获得积分10
7秒前
雨霧雲完成签到,获得积分10
7秒前
qnqqq完成签到 ,获得积分10
8秒前
健壮的涑发布了新的文献求助10
8秒前
9秒前
9秒前
秋山伊夫完成签到,获得积分10
9秒前
入门的橙橙完成签到 ,获得积分10
9秒前
BONBON发布了新的文献求助10
10秒前
12秒前
TOM完成签到,获得积分10
12秒前
隐形曼青应助欣喜访旋采纳,获得10
13秒前
852应助Millie采纳,获得10
13秒前
龍Ryu完成签到,获得积分10
14秒前
内向凌兰发布了新的文献求助10
15秒前
伍秋望完成签到,获得积分10
15秒前
16秒前
17秒前
跳跃发布了新的文献求助10
18秒前
持卿应助宗磬采纳,获得20
18秒前
18秒前
花生油炒花生米完成签到 ,获得积分10
18秒前
Riki完成签到,获得积分10
20秒前
虚幻白玉发布了新的文献求助10
20秒前
德行天下完成签到,获得积分10
20秒前
Jenny应助lan采纳,获得10
21秒前
fztnh完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808