材料科学
兴奋剂
制氢
离子
压电
化学工程
无定形固体
氢
纳米技术
化学物理
光电子学
复合材料
结晶学
有机化学
工程类
化学
作者
Wenrou Tian,Jun Han,Licheng Wan,Najun Li,Dongyun Chen,Qingfeng Xu,Hua Li,Jianmei Lu
出处
期刊:Nano Energy
[Elsevier]
日期:2023-01-02
卷期号:107: 108165-108165
被引量:54
标识
DOI:10.1016/j.nanoen.2023.108165
摘要
Piezocatalysis is capable of converting mechanical vibrations into chemical energy, portraying a promising alternative technology for wastewater purification and energy regeneration. Tin disulfide (SnS2) has evoked considerable attention in piezocatalysis, yet the efficiency is still far from satisfactory due to the undesirable piezoelectricity. Herein, lattice strain engineering induced by the difference in ion sizes (Cu and Ag to Sn) was utilized for the first time to improve the piezoelectricity of SnS2 to achieve the complete removal of bisphenol A (BPA) in 30 min and a high H2 generation rate (399 μmol g−1 h−1). Mechanism analyses reveal that doping can induce S vacancies and formation of amorphous, increasing the number of surface-reaction sites. Piezoelectricity of SnS2 can be improved greatly due to lattice distortion and uneven charge distribution after doping. These synergistic effects result in elevated carriers and reactive species concentration. Impressively, Ag doping aggravates the lattice deformation due to the largest radius, exhibiting the highest piezocatalystic performance. This efficient lattice distortion engineering can serve as guideline for the development of piezocatalysts for environment remediation and production of hydrogen energy.
科研通智能强力驱动
Strongly Powered by AbleSci AI